

OcNOS[®]

Open Compute Network Operating System for Routed Optical Networking Version 6.4.2

IP Infusion Inc. Proprietary

© 2023 IP Infusion Inc. All Rights Reserved.

This documentation is subject to change without notice. The software described in this document and this documentation are furnished under a license agreement or nondisclosure agreement. The software and documentation may be used or copied only in accordance with the terms of the applicable agreement. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's internal use without the written permission of IP Infusion Inc.

IP Infusion Inc. 3965 Freedom Circle, Suite 200 Santa Clara, CA 95054 +1 408-400-1900 http://www.ipinfusion.com/

For support, questions, or comments via E-mail, contact: support@ipinfusion.com

Trademarks:

IP Infusion and OcNOS are trademarks or registered trademarks of IP Infusion. All other trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.

Use of certain software included in this equipment is subject to the IP Infusion, Inc. End User License Agreement at http://www.ipinfusion.com/license. By using the equipment, you accept the terms of the End User License Agreement.

Contents

NetConf Port Access Control.	8
	0
	0 0
	0 و
	0 ۵
Enable Notconf sch on the default and wrf management port	9 0
Enable Netconf tis on the default and vir management port	۰۹ ۵
Disable netconf ssh via default and vir management port	۳ ۳ 13
Disable netconf the via default port and virt management port.	13
	۰۱۵ ۱۸
Ding between two nodes via Vang CLL	16
	10
Implementation Examples	24
Accessing P1 from P2 with default port	···24
Accessing R1 from R2 with user defined port	24 25
	25 25
	25 25
foature noteonf sch	2J 25
	20 26
	20 27
	، ۲۲ مر
show noteonf conver	20 مر
show rupping config poteonf conver	20
Revised CLL Commands	20 20
	20
	30
	55
Hide the Remote AS using the neighbor local-as Command	36
Overview	36
Feature Characteristics	36
Benefits	36
Configuration	36
Тороlogy	37
Validation	38
neighbor local-as	41
Abbreviations	42
TCP MSS configuration for BCP neighbors	11
Overview	 44
Feature Characteristics	44
Benefits	44
Prerequisites	45
Configuration	45
Topology	
lopology	40

	. 45
	. 46
New CLI Commands	. 49
	. 49
	. 50
Glossary	. 50
TCP MSS configuration for LDP sessions	. 52
Overview	. 52
Feature Characteristics	. 52
Benefits	. 52
Prerequisites	. 53
Configuration	. 53
Enable Label Switching	. 53
Topology	. 53
Configuration	. 53
Validation	. 56
Configure TCP MSS on ALL neighbor	. 60
Validation	. 63
Configuration of TCP MSS with Auto-targeted	. 66
Validation	. 69
New CLI Command	. 72
neighbor tcp-mss	. 72
Abbreviations	. 73
Glossary	. 73
	. 14 74
	. 74
	. 74
Pealure Characteristics	74
Benefits	. 74
Feature Characteristics Benefits Configuration Validation	. 74 . 74 . 74
Feature Characteristics Benefits Configuration Validation CLL Commands	. 74 . 74 . 74 . 75
Peature Characteristics Benefits Configuration Validation CLI Commands acc authentication login default fallback error	. 74 . 74 . 74 . 75
Feature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error	. 74 . 74 . 74 . 75 . 75
Peature Charactenstics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default	. 74 . 74 . 74 . 75 . 75 . 76 . 76
Peature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations	. 74 . 74 . 74 . 75 . 75 . 76 . 77
Feature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations	. 74 . 74 . 75 . 75 . 75 . 76 . 77
Peature Charactenstics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations	. 74 . 74 . 75 . 75 . 75 . 76 . 77 . 78 . 78
Beautre Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics	. 74 . 74 . 75 . 75 . 76 . 77 . 78 . 78 . 78
Feature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics Benefits	. 74 . 74 . 75 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78
Feature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics Benefits Configuration	. 74 . 74 . 75 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78 . 78 . 78
Feature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics Benefits Configuration Implementation Examples	. 74 . 74 . 74 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78 . 78 . 78
Feature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics Benefits Configuration Implementation Examples CLI Commands	. 74 . 74 . 74 . 75 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78 . 79 . 79 . 79
Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY. Overview Feature Characteristics Benefits Configuration Implementation Examples CLI Commands Abbreviations.	. 74 . 74 . 74 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78 . 78 . 78
Feature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics Benefits Configuration Implementation Examples CLI Commands Abbreviations	. 74 . 74 . 74 . 75 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78 . 79 . 79 . 79 . 79
Peature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics Benefits Configuration Implementation Examples CLI Commands Abbreviations	. 74 . 74 . 74 . 75 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78 . 78 . 78
Peature Characteristics Benefits Configuration Validation CLI Commands aaa authentication login default fallback error aaa authentication login default Abbreviations Modified Extended ACL Deny Rule Behavior in VTY Overview Feature Characteristics Benefits Configuration Implementation Examples CLI Commands Abbreviations.	. 74 . 74 . 74 . 75 . 75 . 76 . 77 . 78 . 78 . 78 . 78 . 78 . 78 . 78

Benefits	82
Prerequisite	82
Configuration	82
Тороюду	82
	83
Validation	
Implementation Examples	
New CLI Commands	96
detour-allow-primary-unstream-path	96
Glosson	
Ologgal y	
Commit Rollback	99
Overview	99
Feature Characteristics	99
Benefits	99
Prerequisites	99
Commands for Commit Rollback	100
Abbreviations	100
Route Monitor	102
Overview	102
Feature Characteristics	102
Benefits	102
Prerequisites	102
Configuration	103
Тороюду	103
IPv4 Configuration	103
Validation	105
IPv6 Configuration	106
Validation	109
Implementation Examples	110
New CLI Commands	110
	110
	110
	111
Glossory	111
DHCP Server Group	114
Overview	114
Feature Characteristics	114
Benefits	115
Configuration	
Τοροίοαν	115
Configuration	116
Validation	110
Validation	
	119
	120

Validation
Validation
Validation
Validation
Validation
New CLI Commands 12
ip dhcp relay server-group
ip dhcp relay server-select
ipv6 dhcp relay server-group
ipv6 dhcp relay server-select
server A.B.C.D
server X:X::X:X
Abbreviations

Enhanced Security and Performance

This section, describes the security, performance and authentication enhancements introduced in the Release 6.4.1.

- NetConf Port Access Control
- Hide the Remote AS using the neighbor local-as Command
- TCP MSS configuration for BGP neighbors
- TCP MSS configuration for LDP sessions
- Fall Back Option for RADIUS Authentication
- Modified Extended ACL Deny Rule Behavior in VTY

NetConf Port Access Control

Overview

NetConf is a software tool that provides a mechanism to configure and manage remote network devices seamlessly. It uses a simple Remote Procedure Call (RPC) mechanism to facilitate communication between a client and a server.

During the OcNOS installation, the NetConf subsystem called "netconf" is installed. It runs on the default access port 830 over SSH and port 6513 over TLS.

Typically, these default access ports are not configurable and controlled. The NetConf port access control feature enhancement ensures that the Netconf-SSH and NetConf-TLS port access can be controlled and configurable through the new CLIs introduced in the 6.4.1 release.

The following are the new CLIs introduced to support the NetConf port access control:

- feature netconf-ssh
- feature netconf-tls
- netconf-ssh port
- netconf-tls port
- show netconf server
- show running-config netconf server

The following existing CLI is updated to support the NetConf port access control

ip access-list tcp|udp

Feature Characteristics

- This feature allows access control capabilities for the NetConf-SSH and NetConf-TLS ports.
- Enabling/disabling the port.
- Changing the default port.
- Accessing and controlling the NetConf services through Inband and Outband.
- Applying ACL rules to the NetConf port to control its access.

Benefits

This feature enables the user to control the NetConf port access and change the default port.

Configuration

To configure either NetConf-SSH port or the NetConf-TLS port, perform the following steps. After completing the steps you will be configured with a port for NetConf.

- 1. Disable netconf-ssh and netconf-tls feature
- 2. Configure port for netconf-ssh and netconf-tls
- 3. Enable netconf-ssh and netconf-tls feature

Topology

NetConf Accses Port Topology

Enable Netconf-ssh on the default and vrf management port

R1

#configure terminal	Enter Configuration mode.
R1(config)#feature netconf-ssh	Enable netconf-ssh via default port.
R1(config)#feature netconf-ssh vrf management	Enable netconf-ssh via vrf management port.
R1(config)#commit	Commit all the transactions.

Enable Netconf-tis on the default and vrf management port

R1

#configure terminal	Enter Configuration mode
R1(config)#feature netconf-tls	Enable netconf-tls via default port
R1(config)#feature netconf-tls vrf management	Enable netconf-tls via vrf management port
R1(config)#commit	Commit all the transactions

Validation

Execute the below commands to verify the NetConf port is enabled on VRF Management.

Following is the output of the NetConf server status and port.

```
#show netconf server
VRF Management
Netconf SSH Server: Enabled
```

```
SSH-Netconf Port : 830
Netconf TLS Server: Enabled
TLS-Netconf Port : 6513
VRF Default
Netconf SSH Server: Enabled
SSH-Netconf Port : 830
Netconf TLS Server: Enabled
TLS-Netconf Port : 6513
```

Following is the output of NetConf server configurations.

```
#show running-config netconf-server
!
feature netconf-ssh vrf management
feature netconf-tls vrf management
netconf server ssh-port 2000 vrf management
netconf server tls-port 60000 vrf management
feature netconf-ssh
feature netconf-tls
netconf server ssh-port 1060
netconf server tls-port 5000
!
```

Following is the output of the NetConf server configuration in XML format.

```
#show xml running-config
<netconf-server xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-management-serve</pre>
r">
  <vrfs>
    <vrf>
      <vrf-name>default</vrf-name>
      <config>
        <vrf-name>default</vrf-name>
      </config>
      <netconf-ssh-config>
        <config>
          <feature-netconf-ssh>true</feature-netconf-ssh>
          <ssh-port>1060</ssh-port>
        </config>
      </netconf-ssh-config>
      <netconf-tls-config>
        <config>
          <feature-netconf-tls>true</feature-netconf-tls>
          <tls-port>5000</tls-port>
        </config>
      </netconf-tls-config>
    </vrf>
    <vrf>
      <vrf-name>management</vrf-name>
      <config>
        <vrf-name>management</vrf-name>
```

```
</config>
      <netconf-ssh-config>
        <config>
          <feature-netconf-ssh>true</feature-netconf-ssh>
          <ssh-port>2000</ssh-port>
        </config>
      </netconf-ssh-config>
      <netconf-tls-config>
        <config>
          <feature-netconf-tls>true</feature-netconf-tls>
          <tls-port>60000</tls-port>
        </config>
      </netconf-tls-config>
    </vrf>
  </vrfs>
</netconf-server>
<network-instances xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-network-insta</pre>
nce">
  <network-instance>
    <instance-name>default</instance-name>
    <instance-type>vrf</instance-type>
    <config>
      <instance-name>default</instance-name>
      <instance-type>vrf</instance-type>
    </config>
    <vrf xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-vrf">
      <config>
        <vrf-name>default</vrf-name>
      </config>
    </vrf>
  </network-instance>
  <network-instance>
    <instance-name>management</instance-name>
    <instance-type>vrf</instance-type>
    <config>
      <instance-name>management</instance-name>
      <instance-type>vrf</instance-type>
    </config>
    <vrf xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-vrf">
      <config>
        <vrf-name>management</vrf-name>
      </config>
    </vrf>
  </network-instance>
</network-instances>
<interfaces xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-interface">
```

Following is the output after login to the NetConf interface (YangCLI) on R1 node via the default NetConf port:

```
root@OcNOS:~# ip netns exec zebosfib0 yangcli --server=127.1 --user=ocnos --
password=ocnos
yangcli version 2.5-5
  libssh2 version 1.8.0
  Copyright (c) 2008-2012, Andy Bierman, All Rights Reserved.
  Copyright (c) 2013-2015, Vladimir Vassilev, All Rights Reserved.
  Copyright (c) 2012-2016, OpenClovis Inc, All Rights Reserved.
  Type 'help' or 'help <command-name>' to get started
  Use the <tab> key for command and value completion
  Use the <enter> key to accept the default value in brackets
  These escape sequences are available when filling parameter values:
        ?
               help
        ??
                full help
        ?s
                skip current parameter
        ?c
                cancel current command
  These assignment statements are available when entering commands:
        $<varname> = <expr>
                             Local user variable assignment
        $$<varname> = <expr> Global user variable assignment
        @<filespec> = <expr> File assignment
val->res is NO ERR.
yangcli: Starting NETCONF session for ocnos on 127.1
NETCONF session established for ocnos on 127.1
```

..... **.** .

Disable netconf-ssh via default and vrf management port

R1

#configure terminal	Enter Configuration mode
R1(config)#no feature netconf-ssh	Disable netconf-ssh via default port
R1(config)#no feature netconf-ssh vrf management	Disable netconf-ssh via vrf management
R1(config)#commit	Commit all the transactions

Disable netconf-tls via default port and vrf management port

R1

#configure terminal	Enter Configuration mode
R1(config)#no feature netconf-tls	Disable netconf-tls via default
R1(config)#no feature netconf-tls vrf management	Disable netconf-tls via vrf management port
R1(config)#commit	Commit all the transactions

Validation

Execute the below commands to verify the NetConf port is disabled on VRF Management.

Following is the output of the NetConf server status and port.

Configuring NetConf Port

R1

#configure terminal	Enter Configuration mode
R1(config)#no feature netconf-ssh	Disable netconf-ssh via default port
R1(config)#no feature netconf-ssh vrf management	Disable netconf-ssh via vrf management port
R1(config)#no feature netconf-tls	Disable netconf-tls via default port
R1(config)#no feature netconf-tls vrf management	Disable netconf-tls via vrf management port
R1(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R1(config)#netconf server ssh-port 1060	Configure port for netconf-ssh default
R1(config)#netconf server ssh-port 2000 vrf management	Configure port for netconf-ssh vrf management
R1(config)#netconf server tls-port 5000	Configure port for netconf-tls default
R1(config)#netconf server tls-port 60000 vrf management	Configure port for netconf-tls vrf management
R1(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R1(config)#feature netconf-ssh	Enable netconf-ssh via default port
R1(config)#feature netconf-ssh vrf management	Enable netconf-ssh via vrf management port
R1(config)#feature netconf-tls	Enable netconf-tls via default port
R1(config)#feature netconf-tls vrf management	Enable netconf-tls via vrf management port
R1(config)#commit	Commit all the transactions

Validation

Following is the output of the NetConf server status and port.

```
#show netconf server
VRF Management
Netconf SSH Server: Enabled
SSH-Netconf Port : 2000
Netconf TLS Server: Enabled
TLS-Netconf Port : 60000
VRF Default
Netconf SSH Server: Enabled
SSH-Netconf Port : 1060
Netconf TLS Server: Enabled
TLS-Netconf Port : 5000
```

Following is the output after login to the NetConf interface (YangCLI) on R1 node via the user defined NetConf port:

```
root@OcNOS:~# ip netns exec zebosfib1 yangcli --server=127.1 --user=ocnos --
password=ocnos ncport=2000
Warning: Revision date in the future (2022-08-30), further warnings are suppressed
ietf-netconf-notifications.yang:46.4: warning(421): revision date in the future
 yangcli version 2.5-5
 libssh2 version 1.8.0
 Copyright (c) 2008-2012, Andy Bierman, All Rights Reserved.
  Copyright (c) 2013-2015, Vladimir Vassilev, All Rights Reserved.
 Copyright (c) 2012-2016, OpenClovis Inc, All Rights Reserved.
 Type 'help' or 'help <command-name>' to get started
 Use the <tab> key for command and value completion
 Use the <enter> key to accept the default value in brackets
 These escape sequences are available when filling parameter values:
        ?
               help
        ??
               full help
               skip current parameter
        ?s
               cancel current command
        20
  These assignment statements are available when entering commands:
        $<varname> = <expr> Local user variable assignment
        $$<varname> = <expr> Global user variable assignment
        @<filespec> = <expr> File assignment
val->res is NO ERR.
yangcli: Starting NETCONF session for ocnos on 127.1
NETCONF session established for ocnos on 127.1
Checking Server Modules...
yangcli ocnos@127.1>
```

Ping between two nodes via Yang CLI

Perform the following configurations to verify the reachability among R1, R2 and R3 routers via NetConf-SSH and NetConf-TLS port.

R1

#configure terminal	Enter Configuration mode
R1(config)#no feature netconf-ssh	Disable netconf-ssh via default
R1(config)#no feature netconf-ssh vrf management	Disable netconf-ssh via vrf management port
R1(config)#no feature netconf-tls	Disable netconf-tls via default port
R1(config)#no feature netconf-tls vrf management	Disable netconf-tls via vrf management port
R1(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R1(config)#netconf server ssh-port 1060	Configure port for netconf-ssh default
R1(config)#netconf server ssh-port 2000 vrf management	Configure port for netconf-ssh vrf management
R1(config)#netconf server tls-port 5000	Configure port for netconf-tls default
R1(config)#netconf server tls-port 60000 vrf management	Configure port for netconf-tls vrf management
R1(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R1(config)#feature netconf-ssh	Enable netconf-ssh via default port
R1(config)#feature netconf-ssh vrf management	Enable netconf-ssh via vrf management port
R1(config)#feature netconf-tls	Enable netconf-tls via default port
R1(config)#feature netconf-tls vrf management	Enable netconf-tls via vrf management port
R1(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R1(config)#interface xel	Enter interface mode
R1(config)#ip address 10.10.10.1/24	Configure ipv4 address on the interface xe1.
R1(config)#commit	Commit all the transactions

R2

#configure terminal	Enter Configuration mode
R2(config)#no feature netconf-ssh	Disable netconf-ssh via default
R2(config)#no feature netconf-ssh vrf management	Disable netconf-ssh via vrf management
R2(config)#no feature netconf-tls	Disable netconf-tls via default
R2(config)#no feature netconf-tls vrf management	Disable netconf-tls via vrf management port
R2(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R2(config)#netconf server ssh-port 1060	Configure port for netconf-ssh default

R2(config)#netconf server ssh-port 2000 vrf management	Configure port for netconf-ssh vrf management
R2(config)#netconf server tls-port 5000	Configure port for netconf-tls default
R2(config)#netconf server tls-port 60000 vrf management	Configure port for netconf-tls vrf management
R2(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R2(config)#feature netconf-ssh	Enable netconf-ssh via default port
R2(config)#feature netconf-ssh vrf management	Enable netconf-ssh via vrf management port
R2(config)#feature netconf-tls	Enable netconf-tls via default port
R2(config)#feature netconf-tls vrf management	Enable netconf-tls via vrf management port
R2(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R2(config)#interface xel	Enter interface mode
R2(config)#ip address 10.10.10.2/24	Configure ipv4 address on the interface xe1.
R2(config)#commit	Commit all the transactions

Validation

Following is the output of the configured NetConf port.

```
#show netconf server
VRF Management
        Netconf SSH Server: Enabled
        SSH-Netconf Port : 2000
        Netconf TLS Server: Enabled
        TLS-Netconf Port : 60000
VRF Default
        Netconf SSH Server: Enabled
        SSH-Netconf Port : 1060
        Netconf TLS Server: Enabled
        TLS-Netconf Port : 5000
OcNOS#show running-config interface xel
Т
interface xel
 ip address 10.10.10.1/24
!
OcNOS#ping 10.10.10.2
Press CTRL+C to exit
PING 10.10.10.2 (10.10.10.2) 56(84) bytes of data.
64 bytes from 10.10.10.2: icmp_seq=1 ttl=64 time=0.567 ms
64 bytes from 10.10.10.2: icmp seq=2 ttl=64 time=0.258 ms
64 bytes from 10.10.10.2: icmp_seq=3 ttl=64 time=0.241 ms
```

```
--- 10.10.10.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 80ms
rtt min/avg/max/mdev = 0.241/0.355/0.567/0.150 ms
```

Following is the output after login to the NetConf interface (YangCLI) on R2 node through the user defined NetConf port:

```
root@OcNOS:~# ip netns exec zebosfib0 yangcli --server=10.10.10.2 --user=ocnos --
password=ocnos ncport=1060
Warning: Revision date in the future (2022-08-30), further warnings are suppressed
ietf-netconf-notifications.yang:46.4: warning(421): revision date in the future
  yangcli version 2.5-5
  libssh2 version 1.8.0
 Copyright (c) 2008-2012, Andy Bierman, All Rights Reserved.
 Copyright (c) 2013-2015, Vladimir Vassilev, All Rights Reserved.
  Copyright (c) 2012-2016, OpenClovis Inc, All Rights Reserved.
 Type 'help' or 'help <command-name>' to get started
 Use the <tab> key for command and value completion
 Use the <enter> key to accept the default value in brackets
  These escape sequences are available when filling parameter values:
        ?
               help
                full help
        22
        ?s
                skip current parameter
        ?c
                cancel current command
 These assignment statements are available when entering commands:
        $<varname> = <expr>
                               Local user variable assignment
        $$<varname> = <expr>
                               Global user variable assignment
        @<filespec> = <expr>
                               File assignment
val->res is NO ERR.
yangcli: Starting NETCONF session for ocnos on 10.10.10.2
NETCONF session established for ocnos on 10.10.10.2
Checking Server Modules...
```

```
yangcli <u>ocnos@10.10.10.2</u>>
```

ACL Rule with IPv4 Configuration

Perform the following configurations to apply an ACL rule to allow or deny traffic from R1 to other nodes via NetConf port.

R1

#configure terminal	Enter Configuration mode	
R1(config)#no feature netconf-ssh	Disable netconf-ssh via default	
R1(config)#no feature netconf-ssh vrf management	Disable netconf-ssh via vrf management port	
R1(config)#no feature netconf-tls	Disable netconf-tls via default port	
R1(config)#no feature netconf-tls vrf management	Disable netconf-tls via vrf management port	
R1(config)#commit	Commit all the transactions	
#configure terminal	Enter Configuration mode	
R1(config)#netconf server ssh-port 1060	Configure port for netconf-ssh default	
R1(config)#netconf server ssh-port 2000 vrf management	Configure port for netconf-ssh vrf management	
R1(config)#netconf server tls-port 5000	Configure port for netconf-tls default	
R1(config)#netconf server tls-port 60000 vrf management	Configure port for netconf-tls vrf management	
R1(config)#commit	Commit all the transactions	
#configure terminal	Enter Configuration mode	
R1(config)#feature netconf-ssh	Enable netconf-ssh via default port	
R1(config)#feature netconf-ssh vrf management	Enable netconf-ssh via vrf management port	
R1(config)#feature netconf-tls	Enable netconf-tls via default port	
R1(config)#feature netconf-tls vrf management	Enable netconf-tls via vrf management port	
R1(config)#commit	Commit all the transactions	
#configure terminal	Enter Configuration mode	
R1(config)#interface xe1	Enter interface mode	
R1(config)#ip address 10.10.10.1/24	Configure ipv4 address on the interface xe1.	
R1(config)#commit	Commit all the transactions	
<pre>#configure terminal</pre>	Enter Configuration mode	
R1(config)#interface xe2	Enter interface mode	
R1(config)#ip address 20.20.20.1/24	Configure ipv4 address on the interface xe2.	
R1(config)#commit	Commit all the transactions	
<pre>#configure terminal</pre>	Enter Configuration mode	
R1(config)#ip access-list ACL1	Create ip access list	
R1(config)#permit any host 10.1.1.1 any	Create an acl rule to permit	
R1(config)#deny any host 20.1.1.1 any	Create an acl rule to deny	
R1(config)#commit	Commit all the transactions	

R2

Perform the following configurations to apply an ACL rule to allow or deny traffic from R2 to other nodes via NetConf port

#configure terminal	Enter Configuration mode	
R2(config)#no feature netconf-ssh	Disable netconf-ssh via default	
R2(config)#no feature netconf-ssh vrf management	Disable netconf-ssh via vrf management	
R2(config)#no feature netconf-tls	Disable netconf-tls via default	
R2(config)#no feature netconf-tls vrf management	Disable netconf-tls via vrf management port	
R2(config)#commit	Commit all the transactions	
#configure terminal	Enter Configuration mode	
R2(config)#netconf server ssh-port 1060	Configure port for netconf-ssh default	
R2(config)#netconf server ssh-port 2000 vrf management	Configure port for netconf-ssh vrf management	
R2(config)#netconf server tls-port 5000	Configure port for netconf-tls default	
R2(config)#netconf server tls-port 60000 vrf management	Configure port for netconf-tls vrf management	
R2(config)#commit	Commit all the transactions	
#configure terminal	Enter Configuration mode	
R2(config)#feature netconf-ssh	Enable netconf-ssh via default port	
R2(config)#feature netconf-ssh vrf management	Enable netconf-ssh via vrf management port	
R2(config)#feature netconf-tls	Enable netconf-tls via default port	
R2(config)#feature netconf-tls vrf management	Enable netconf-tls via vrf management port	
R2(config)#commit	Commit all the transactions	
#configure terminal	Enter Configuration mode	
R2(config)#interface xel	Enter interface mode	
R2(config)#ip address 10.10.10.2/24	Configure ipv4 address on the interface xe1.	
R2(config)#commit	Commit all the transactions	

R3

Perform the following configurations to apply an ACL rule to allow or deny traffic from R3 to other nodes via NetConf port.

#configure terminal	Enter Configuration mode
R3(config)#no feature netconf-ssh	Disable netconf-ssh via default
R3(config)#no feature netconf-ssh vrf management	Disable netconf-ssh via vrf management port
R3(config)#no feature netconf-tls	Disable netconf-tls via default port

R3(config)#no feature netconf-tls vrf management	Disable netconf-tls via vrf management port
R3(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R3(config)#netconf server ssh-port 1060	Configure port for netconf-ssh default
R3(config)#netconf server ssh-port 2000 vrf management	Configure port for netconf-ssh vrf management
R3(config)#netconf server tls-port 5000	Configure port for netconf-tls default
R3(config)#netconf server tls-port 60000 vrf management	Configure port for netconf-tls vrf management
R3(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R3(config)#feature netconf-ssh	Enable netconf-ssh via default port
R3(config)#feature netconf-ssh vrf management	Enable netconf-ssh via vrf management port
R3(config)#feature netconf-tls	Enable netconf-tls via default port
R3(config)#feature netconf-tls vrf management	Enable netconf-tls via vrf management port
R3(config)#commit	Commit all the transactions
#configure terminal	Enter Configuration mode
R3(config)#interface xell	Enter interface mode
R3(config)#ip address 20.20.20.2/24	Configure ipv4 address on the interface xe11.
R3(config)#commit	Commit all the transactions

Validation

Following is the output to verify the user defined NetConf port.

```
Rl#show running-config netconf-server
!
feature netconf-ssh vrf management
feature netconf-tls vrf management
netconf server ssh-port 2000 vrf management
netconf server tls-port 60000 vrf management
feature netconf-ssh
feature netconf-tls
netconf server ssh-port 1060
netconf server tls-port 5000
1
R1#show netconf server
VRF Management
        Netconf SSH Server: Enabled
        SSH-Netconf Port : 2000
        Netconf TLS Server: Enabled
        TLS-Netconf Port : 60000
```

```
VRF Default
Netconf SSH Server: Enabled
SSH-Netconf Port : 1060
Netconf TLS Server: Enabled
TLS-Netconf Port : 5000
```

Following is the output of the show running-config in XML format.

```
R1#show xml running-config
<netconf-server xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-management-serve</pre>
r">
  <vrfs>
    <vrf>
      <vrf-name>default</vrf-name>
      <config>
        <vrf-name>default</vrf-name>
      </config>
      <netconf-ssh-config>
        <config>
          <feature-netconf-ssh>true</feature-netconf-ssh>
          <ssh-port>1060</ssh-port>
        </config>
      </netconf-ssh-config>
      <netconf-tls-config>
        <config>
          <feature-netconf-tls>true</feature-netconf-tls>
          <tls-port>5000</tls-port>
        </config>
      </netconf-tls-config>
    </vrf>
    <vrf>
      <vrf-name>management</vrf-name>
      <config>
        <vrf-name>management</vrf-name>
      </config>
      <netconf-ssh-config>
        <config>
          <feature-netconf-ssh>true</feature-netconf-ssh>
          <ssh-port>2000</ssh-port>
        </config>
      </netconf-ssh-config>
      <netconf-tls-config>
        <config>
          <feature-netconf-tls>true</feature-netconf-tls>
          <tls-port>60000</tls-port>
        </config>
      </netconf-tls-config>
    </vrf>
  </vrfs>
</netconf-server>
```

```
<network-instances xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-network-insta</pre>
nce">
  <network-instance>
    <instance-name>default</instance-name>
    <instance-type>vrf</instance-type>
    <config>
      <instance-name>default</instance-name>
      <instance-type>vrf</instance-type>
    </config>
    <vrf xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-vrf">
      <config>
        <vrf-name>default</vrf-name>
      </config>
    </vrf>
  </network-instance>
  <network-instance>
    <instance-name>management</instance-name>
    <instance-type>vrf</instance-type>
    <config>
      <instance-name>management</instance-name>
      <instance-type>vrf</instance-type>
    </config>
    <vrf xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-vrf">
      <config>
        <vrf-name>management</vrf-name>
      </config>
    </vrf>
  </network-instance>
</network-instances>
<interfaces xmlns="http://www.ipinfusion.com/yang/ocnos/ipi-interface">
```

Implementation Examples

The below examples are based on the topology given in Topology section.

Accessing R1 from R2 with default port

Below is an example to access R1 from R2 with default port.

From OcNOS CLI:

feature netconf-ssh
feature netconf-ssh vrf management
feature netconf-tls
feature netconf-tls vrf management

From Yang CLI:

```
root@OcNOS:~# ip netns exec zebosfib0 yangcli --server=127.1 --user=ocnos --
password=ocnos
```

Accessing R1 from R2 with user defined port

Below is an example to access R1 from R2 via user defined port.

```
From OcNOS CLI:
```

netconf server ssh-port 1060
netconf server ssh-port 2000 vrf management
netconf server tls-port 5000
netconf server tls-port 60000 vrf management

From Yang CLI:

```
root@OcNOS:~#ip netns exec zebosfib1 yangcli --server=10.10.10.1 --user=ocnos --
password=ocnos ncport=2000
```

Applying ACL rule to permit or deny any Node

Below is an example to permit any traffic originating from IP address 10.1.1.1. and deny any traffic originating from 20.1.1.1.

From OcNOS CLI:

```
ip access-list ACL1
permit any host 10.1.1.1 any
deny any host 20.1.1.1 any
Permitting R2 and denying R3
```

From Yang CLI:

```
root@OcNOS:~# ip netns exec zebosfib1 yangcli --server=10.10.10.2 --user=ocnos --
password=ocnos ncport=2000
```

New CLI Commands

feature netconf-ssh

Use this command to enable or disable the netconf-ssh feature specific to the management VRF. When netconf feature-ssh is enabled, it allows the logins through the default netconf-ssh port or through default ssh port if feature SSH is also enabled.

Command Syntax

```
feature netconf-ssh (vrf management|)
```

```
no feature netconf-ssh (vrf management|)
```

Parameters

vrf management Specifies the management Virtual Routing and Forwarding

Default

Disabled by default.

Command Mode

Configure mode

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The following example shows you how to enable NetConf SSH on either the VRF management port or the default port. The no parameter disables the same.

```
(config) #feature netconf-ssh vrf management
(config) #feature netconf-ssh
(config) #no feature netconf-ssh vrf management
(config) #no feature netconf-ssh
#
```

feature netconf-tls

Use this command to enable or disable the NetConf TLS feature specific to a VRF. When netconf feature-ssh is enabled, it allows the logins through the default netconf-tls port and allows login through a default TLS port when the TLS feature is also enabled.

Command Syntax

feature netconf-tls (vrf management|)
no feature netconf-tls (vrf management|)

Parameters

vrf management Specifies management Virtual Routing and Forwarding.

Default

Disabled by default.

Command Mode

Configure mode

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The following example shows how to execute the CLI:

```
(config) #feature netconf-tls vrf management
(config) #feature netconf-tls
(config) #no feature netconf-tls vrf management
(config) #no feature netconf-tls
```

If either NetConf SSH or NetConf TLS are disabled one after the other, the following error message will be displayed, % Disabling this will stop the netconf service that is running in management vrf" as shown below.

Management VRF Configuration

OcNOS#configure terminal Enter configuration commands, one per line. End with CNTL/Z. (config)#no feature netconf-ssh vrf management (config)#commit (config)#no feature netconf-tls vrf management (config)#commit % Disabling this will stop the netconf service that is running in management vrf.

Default VRF Configuration

OcNOS#configure terminal Enter configuration commands, one per line. End with CNTL/Z. (config)#no feature netconf-ssh vrf management (config)#commit (config)#no feature netconf-tls vrf management (config)#commit % Disabling this will stop the netconf service that is running in defualt vrf.

netconf-ssh port

Use this command to either configure or unconfigure the custom NetConf SSH port.

Command Syntax

```
netconf-server ssh-port <1024-65535> (vrf management|)
no netconf-server ssh-port (vrf management|)
```

Parameters

<1024-65535>	Port range values
Default	By default, the netconf-ssh port value is 830.
vrf	Specifies the management Virtual Routing and Forwarding name

Command Mode

Config mode

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The following example shows how to execute the CLI:

```
(config)#netconf server ssh-port ?
  <1024-65535> port
(config)#netconf server ssh-port 1024 vrf management
```

```
(config) #netconf server ssh-port 2000
(config) #no netconf server ssh-port
(config) #no netconf server ssh-port vrf management
```

netconf-tls port

Use this command to either configure or unconfigure the indicated NetConf TLS port.

Command Syntax

```
netconf-server tls-port <1024-65535> (vrf management|)
no netconf-server tls-port (vrf management|)
```

Parameters

<1024-65535>	Port range values
Default	By default, the netconf-tls port value is 6513.
vrf	Specifies the management Virtual Routing and Forwarding name

Command Mode

Config mode

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

```
(config)#netconf server tls-port ?
   <1024-65535> port
(config)#netconf server tls-port 5000 vrf management
(config)#netconf server tls-port 3000
(config)#no netconf server tls-port vrf management
(config)#no netconf server tls-port
```

show netconf server

Use this command to display netconf server status.

Command Syntax

show netconf server

Parameters

None

Command Mode

Exec mode

Applicability

This command was introduced before OcNOS version 6.4.1.

Examples

The following example shows the output of the CLI:

OcNOS#show netconf server VRF MANAGEMENT Netconf Server: Enabled SSH-Netconf Port : 1000 TLS-Netconf Port : 7000 VRF DEFAULT Netconf Server: Enabled SSH-Netconf Port : 4500 TLS-Netconf Port : 3000

show running-config netconf server

Use this command to display the NetConf server settings that appear in the running configuration.

Command Syntax

show running-config netconf-server

Parameters

None

Command Mode

Exec mode

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The following example shows the output of the CLI:

```
OcNOS#show running-config netconf-server
feature netconf vrf management
netconf server ssh-port 1000 vrf management
netconf server tls-port 7000 vrf management
feature netconf
netconf server ssh-port 4500
netconf server tls-port 3000
!
```

Revised CLI Commands

The existing ip access-list tcp|udp CLI is updated with the following two options to support the Access List (ACL) rules on the NetConf port. The ACL defines a set of rules to control network traffic and reduce network attacks.

netconf-ssh	Secure Shell Network Configuration
netconf-tls	Transport Layer Security Network Configuration

ip access-list tcp|udp

Use this command to define a named access control list (ACL) that determines whether to accept or drop an incoming TCP or UDP IP packet based on the specified match criteria. This command filters packets based on source and destination IP address along with the TCP or UDP protocol and port.

Use the no form of this command to remove an ACL specification.

- Note: Configuring same filter again with change of sequence number or change of action will result in update of sequence number or filter action.
- Note: TCP flags options and range options like neq, gt, lt and range are not supported by hardware in egress direction.
- Note: Both Ack and established flag in tcp have same functionality in hardware.

Command Syntax

- (<1-268435453>|) (deny|permit) tcp (A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D|any) ((eq|gt|lt|neq) (<0-65535>|bgp|chargen|cmd|daytime|discard|domain|drip|echo |exec|finger|ftp |ftp-data|gopher|hostname|ident|irc|klogin|kshell|login |lpd|nntp|pim-auto- rp|pop2|pop3|smtp|ssh|sunrpc|tacacs|talk|telnet|time| uucp|whois|www)| range <0-65535> <0-65535>|) (A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D|any) ((eq|gt|lt|neq) (<0-65535>|bgp|chargen|cmd|daytime|discard|domain| drip|echo|exec|finger|ftp|ftp-data|gopher|hostname|ident|irc|klogin|kshell|login |lpd|nntp|pim-auto- rp|pop2|pop3|smtp|ssh|sunrpc|tacacs|talk|telnet |time|uucp|whois|www|netconf-ssh|netconf-tls) | range <0-65535> <0-65535>|) ((dscp (<0-63>| af11| af12| af13| af21| af22| af23| af31| af32| af33| af41| af42| af43| cs1| cs2| cs3| cs4| cs5| cs6| cs7| default| ef)) |(precedence (<0-7>| critical| flash | flashoverride| immediate| internet| network| priority| routine)) |) ({ack|established|fin|psh|rst|syn|urg}|) vlan <1-4094>|)(inner-vlan <1-4094>|)
- (<1-268435453>|) (deny|permit) udp (A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D|any) ((eq|gt|lt|neq) (<0-65535>|biff|bootpc|bootps|discard|dnsix|domain| echo|isakmp|mobile-ip |nameserver | netbios-dgm | netbios-ns| netbios-ss|non500 isakmp|ntp|pim-auto-rp|rip|snmp|snmptrap|sunrpc|syslog|tacacs|talk|tftp |time|who|xdmcp) | range <0-65535> <0-65535>|) (A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D|any) ((eq|gt |lt|neq) (<0-65535> |biff |bootpc |bootps| discard| dnsix| domain| echo| isakmp|mobile-ip|nameserver|netbios-dgm|netbios-ns|netbios ss|non500-isakmp |ntp|pim-auto- rp| rip| snmp| snmptrap| sunrpc| syslog| tacacs| talk| tftp| time| who| xdmcp) | range <0-65535> <0-65535>|) ((dscp (<0-63>| af11| af12| af13| af21| af22| af23| af31| af32| af33| af41| af42| af43| cs1| cs2| cs3| cs4| cs5| cs6| cs7| default| ef)) | (precedence (<0-7>| critical| flash | flashoverride| immediate| internet| network| priority| routine))|) (vlan <1-4094>|) (inner-vlan <1-4094>|)
- no (<1-268435453>|) (deny|permit) tcp (A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D|any)((eq|gt|lt|neq) (<0-65535>| bgp| chargen| cmd| daytime| discard| domain| drip| echo|exec|finger|ftp |ftp-data |gopher |hostname| ident| irc| klogin| kshell|login|lpd|nntp|pim-auto-rp |pop2 |pop3 |smtp| ssh| sunrpc| tacacs |talk|telnet|time|uucp|whois|www|netconf-ssh|netconf-tls) | range <0-65535> <0-65535>|) (A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D|any)((eq|gt|lt|neq) (<0-65535> |bgp |chargen |cmd |daytime|discard|domain|drip|echo|exec|finger|ftp|ftp-data| gopher| hostname| ident| irc| klogin| kshell| login| lpd| nntp| pim-auto-rp | pop2| pop3| smtp |ssh |sunrpc|tacacs|talk|telnet|time|uucp|whois|www) | range <0-65535> <0-65535>|) ((dscp (<0-63>| af11| af12| af13| af21| af22| af23| af31| af32| af33| af41| af42| af43| cs1| cs2| cs3| cs4| cs5| cs6| cs7| default| ef)) |

(precedence (<0-7>| critical| flash | flashoverride| immediate| internet| network| priority| routine)) |) ({ack|established|fin|psh|rst|syn|urg}|)(vlan <1-4094>|)(inner-vlan <1-4094>|)

no (<1-268435453>|)(deny|permit) udp (A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D|any) ((eq|gt|lt|neq) (<0-65535> |biff| bootpc| bootps| discard| dnsix| domain|echo|isakmp|mobile-ip|nameserver|netbios-dgm|netbios-ns|netbiosss|non500-isakmp|ntp|pim-auto-rp|rip|snmp|snmptrap|sunrpc|syslog|tacacs|talk| tftp|time|who|xdmcp) | range <0-65535> <0-65535>|)(A.B.C.D/M|A.B.C.D A.B.C.D|host A.B.C.D| any) ((eq|gt|lt|neq) (<0-65535> |biff| bootpc| bootps| discard| dnsix| domain|echo| isakmp|mobile- ip|nameserver|netbios-dgm|netbios-ns|netbiosss|non500-isakmp| ntp|pim-auto-rp|rip|snmp|snmptrap|sunrpc|syslog| tacacs|talk|tftp|time|who|xdmcp) | range <0-65535> <0-65535>|) ((dscp (<0-63>| af11| af12| af13| af21| af22| af23| af31| af32| af33| af41| af42| af43| cs1| cs2| cs3| cs4| cs5| cs6| cs7| default| ef)) | (precedence (<0-7>| critical| flash | flashoverride| immediate| internet| network| priority| routine)) |)(vlan <1-4094>|)(inner-vlan <1-4094>|)

Parameters

<1-268435453>	IPv4 ACL sequence number.
deny	Drop the packet.
permit	Accept the packet.
tcp	Transmission Control Protocol.
udp	User Datagram Protocol.
A.B.C.D/M	Source or destination IP prefix and length.
A.B.C.D A.B.C.	D
	Source or destination IP address and mask.
host A.B.C.D	Source or destination host IP address.
any	Any source or destination IP address.
eq	Source or destination port equal to.
gt	Source or destination port greater than.
lt	Source or destination port less than.
neq	Source or destination port not equal to.
<0-65535>	Source or destination port number.
range	Range of source or destination port numbers:
<0- 65535>	Lowest value in the range.
<0- 65535>	Highest value in the range.
bgp	Border Gateway Protocol.
chargen	Character generator.
cmd	Remote commands.
daytime	Daytime.
discard	Discard.
domain	Domain Name Service.
drip	Dynamic Routing Information Protocol.

echo	Echo.	
exec	EXEC.	
finger	Finger.	
ftp	File Transfer Protocol.	
ftp-data	FTP data connections.	
gopher	Gopher.	
hostname	NIC hostname server.	
ident	Ident Protocol.	
irc	Internet Relay Chat.	
klogin	Kerberos login.	
kshell	Kerberos shell.	
login	Login.	
lpd	Printer service.	
nntp	Network News Transport Protocol.	
pim-auto-rp	PIM Auto-RP.	
pop2	Post Office Protocol v2.	
рорЗ	Post Office Protocol v3.	
smtp	Simple Mail Transport Protocol.	
ssh	Secure Shell.	
sunrpc	Sun Remote Procedure Call.	
tacacs	TAC Access Control System.	
talk	Talk.	
telnet	Telnet.	
time	Time.	
uucp	UNIX-to-UNIX Copy Program.	
whois	WHOIS/NICNAME	
WWW	World Wide Web.	
netconf-ssh	Secure Shell Network Configuration	
netconf-tls	Transport Layer Security Network Configuration	
nntp	Range of source or destination port numbers:	
dscp	Match packets with given DSCP value.	
<0-63>	Enter DSCP value between 0-63.	
af11	AF11 DSCP (001010) decimal value 10.	
af12	AF12 DSCP (001100) decimal value 12.	
af13	AF13 DSCP (001110) decimal value 14.	
af21	AF21 DSCP (010010) decimal value 18.	
af22	AF22 DSCP (010100) decimal value 20.	
af23	AF23 DSCP (010110) decimal value 22.	
af31	AF31 DSCP (011010) decimal value 26.	

af32	AF32 DSCP (011100) decimal value 28.
af33	AF33 DSCP (011110) decimal value 30.
af41	AF41 DSCP (100010) decimal value 34.
af42	AF42 DSCP (100100) decimal value 36.
af43	AF43 DSCP (100110) decimal value 38.
cs1	CS1 (precedence 1) DSCP (001000) decimal value 8.
cs2	CS2 (precedence 2) DSCP (010000) decimal value 16.
cs3	CS3 (precedence 3) DSCP (011000) decimal value 24.
cs4	CS4 (precedence 4) DSCP (100000) decimal value 32.
cs5	CS5 (precedence 5) DSCP (101000) decimal value 40.
cs6	CS6 (precedence 6) DSCP (110000) decimal value 48.
cs7	CS7 (precedence 7) DSCP (111000) decimal value 56.
default	Default DSCP (000000) decimal value 0.
ef	EF DSCP (101110) decimal value 46.
precedence	Match packets with given precedence value.
<0-7>	Precedence.
critical	Match packets with critical precedence (5).
flash	Match packets with flash precedence (3).
flashoverride	Match packets with flash override precedence (4).
immediate	Match packets with immediate precedence (2).
internet	Match packets with internetwork control precedence (6).
network	Match packets with network control precedence (7).
priority	Match packets with priority precedence (1).
routine	Match packets with routine precedence (0).
ack	Match on the Acknowledgment (ack) bit.
established	Matches only packets that belong to an established TCP connection.
fin	Match on the Finish (fin) bit.
psh	Match on the Push (psh) bit.
rst	Match on the Reset (rst) bit.
syn	Match on the Synchronize (syn) bit.
urg	Match on the Urgent (urg) bit.
biff	Biff.
bootpc	Bootstrap Protocol (BOOTP) client.
bootps	Bootstrap Protocol (BOOTP) server.
discard	Discard.
dnsix	DNSIX security protocol auditing.
domain	Domain Name Service.
echo	Echo.
isakmp	Internet Security Association and Key Management Protocol.

mobile-ip	Mobile IP registration.
nameserver	IEN116 name service.
netbios-dgm	Net BIOS datagram service.
netbios-ns	Net BIOS name service.
netbios-ss	Net BIOS session service.
non500-isakmp	Non500-Internet Security Association and Key Management Protocol.
ntp	Network Time Protocol.
pim-auto-rp	PIM Auto-RP.
rip	Routing Information Protocol.
snmp	Simple Network Management Protocol.
snmptrap	SNMP Traps.
sunrpc	Sun Remote Procedure Call.
syslogS	ystem Logger.
tacacs	TAC Access Control System.
talk	Talk.
tftp	Trivial File Transfer Protocol.
time	Time.
who	Who service.
xdmcp	X Display Manager Control Protocol.
vlan	Match packets with given vlan value.
<1-4094>	VLAN identifier.
inner-vlan	Match packets with given inner vlan value.
<1-4094>	VLAN identifier.

Default

No default value is specified.

Command Mode

IP access-list mode

Applicability

This command was introduced before OcNOS version 1.3.

Examples

The following is an example to execute the CLI:

```
#configure terminal
(config)#ip access-list ip-acl-02
(config-ip-acl)#deny udp any any eq tftp
(config-ip-acl)#deny tcp any any eq ssh
(config-ip-acl)#end.
```

Abbreviations

Acronym	Expantion
ACL	Access control list
RPC	Remote Procedure Call
SSH	Secure Shell
TLS	Transport Layer Security

Hide the Remote AS using the neighbor local-as Command

Overview

In a network, an Autonomous System (AS) is available to define a set of IP routing prefixes that are under a common administration policy control. These defined routing policies are used by other connected routers on the Internet. When an AS is configured in Border Gateway Protocol (BGP), it is used to share routing information to connected peers. The neighbor local-as CLI command configures the AS number to be used with External Border Gateway Protocol (EBGP) peers. By default, the configured AS number is included in the AS-PATH message that is exchanged between the peers.

When a BGP router, configured in one network, connects to another router on the network, it will automatically share routing information with the AS number of both the local and remote routers in the AS-PATH message with other connected, external peers. For example, if a router ISP1-R, accesses services from another router, ISP2-R, ISP1-R router will share routing information with local and remote AS numbers in the AS-PATH message when services are merged. This allows the external peers to learn the AS numbers of remote routers not connected to it (in this case, the AS number of ISP2-R). It is not desirable to disclose the AS number of remote routers to external peers.

To avoid advertising the remote peer's AS number, OcNOS provides an option in the neighbor local-as CLI to not include (no-prepend) the remote AS number and replace (replace-as) it with alternate AS number. Configuring an alternate AS in the BGP neighbor system, provides the ability to hide the AS number of the remote router that actually shares the services. Thus, the AS number of the BGP router that is actually providing services is unknown to the external peer.

Hence, the existing neighbor local-as CLI command has been modified in this release.

Feature Characteristics

The neighbor local-as CLI is enhanced to hide and replace the AS number of the remote routers not connected to external peer. Two new options 'no-prepend' and 'replace-as' have been added. These options replace the AS number with an alternate AS number in the AS_PATH and BGP OPEN message. Hence, the AS of the remote router is unknown to the respective neighbor peer.

Benefits

The actual Autonomous System number is never shared to the external network.

Configuration

The following configuration assumes the router R1 and R2 is assigned with AS300 and AS100 respectively.

Disparate Autonomous System Number

R1

Perform the following configuration on R1 router.

#configure terminal	Enter configure mode.
R1(config)#router bgp 300	Start the BGP process with the Autonomous System number 300
R1(config-router)#neighbor 10.10.10.2 remote-as 200	Establish BGP session with neighbor that has AS number 200
R1(config-router)#address-family ipv4 unicast	Enter address-family ipv4 unicast mode
R1(config-router-af)#neighbor 10.10.10.2 activate	Enable the neighbor 10.10.10.2 router to exchange address family routes
R1(config-router-af)#redistribute connected	Redistribute information from connected routes
R1(config-router-af)#exit-address-family	Exit address-family IPv4 unicast mode
R1(config-router)#commit	Commit the configurations

R2

Perform the following configuration on R2 router.

#configure terminal	Enter configure mode		
R2(config)#router bgp 100	Start the BGP process with the Autonomous System number 100		
R2(config-router)#neighbor 10.10.10.1 remote-as 300	Establish BGP session with neighbor 10.10.10.1 that has AS number 300		
R2(config-router)#neighbor 10.10.10.1 local- as 200 no-prepend replace-as	Replace the AS number 300 with AS number 200 that should be used with the neighbor 10.10.10.1		
R2(config-router)#address-family ipv4 unicast	Enable the neighboring router to exchange address family routes		
R2(config-router-af)#neighbor 10.10.10.2 activate	Enable the neighbor 10.10.10.2 router to exchange address family routes		
R2(config-router-af)#redistribute connected	Redistribute information from the connected routes		
R2(config-router-af)#exit-address-family	Exit address-family ipv4 unicast mode		
R2(config-router)#commit	Commit the configurations		

Validation

Check the AS number 300 running on R1. It has established a BGP connection with 10.10.10.2 router that has AS number of 200.

```
OcNOS#show running-config bgp
!
router bgp 300
 neighbor 10.10.10.2 remote-as 200
 address-family ipv4 unicast
 redistribute connected
 redistribute static
 neighbor 10.10.10.2 activate
 exit-address-family
!
OcNOS#
OcNOS#show ip bgp summary
BGP router identifier 10.10.10.1, local AS number 300
BGP table version is 4
2 BGP AS-PATH entries
0 BGP community entries
                                 MsgRcv
Neighbor
                        V
                            AS
                                          MsgSen TblVer
                                                           InO
                                                                 OutO
                                                                         Up/Down
                                                                                   State/
PfxRcd
10.10.10.2
                         4
                             200 185
                                             181
                                                       3
                                                               0
                                                                      0 00:00:28
                                                                                        2
Total number of neighbors 1
Total number of Established sessions 1
OcNOS#
OcNOS#show ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,
       ia - IS-IS inter area, E - EVPN,
       v - vrf leaked
       * - candidate default
IP Route Table for VRF "default"
С
             10.10.10.0/24 is directly connected, cel, 1d14h18m
В
             30.30.30.0/24 [20/0] via 10.10.10.2, cel, 00:00:18
С
             40.40.40.0/24 is directly connected, xe33, 1d13h40m
С
             127.0.0.0/8 is directly connected, lo, 1d14h23m
Gateway of last resort is not set
```

OcNOS#

Check if the AS number 100 for R2 has been replaced with AS number 200 before sharing the information with R1.

```
OcNOS#show running-config bgp
!
router bgp 100
 neighbor 10.10.10.1 remote-as 300
 neighbor 10.10.10.1 local-as 200
 1
 address-family ipv4 unicast
 redistribute connected
 redistribute static
 neighbor 10.10.10.1 activate
 exit-address-family
!
OcNOS#
OcNOS#show ip bgp summary
BGP router identifier 10.10.10.2, local AS number 100
BGP table version is 2
2 BGP AS-PATH entries
0 BGP community entries
Neighbor
                            AS
                        V
                                 MsgRcv
                                           MsgSen TblVer
                                                            InQ
                                                                  OutQ
                                                                          Up/Down
                                                                                    State/
PfxRcd
10.10.10.1
                            300 180
                                           186
                                                     2
                                                            0
                                                                   0
                                                                          00:00:39
                                                                                         2
                        4
Total number of neighbors 1
Total number of Established sessions 1
Check if the AS number for R2 is changed to 100 and R1 shares AS 100 in the AS-PATH message.
R1
OcNOS#
OCNOS#
OcNOS#show ip bgp
BGP table version is 4, local router ID is 10.10.10.1
Status codes: s suppressed, d damped, h history, a add-path, * valid, > best, i -
internal,
              1 - labeled, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete
   Network
                    Next Hop
                                         Metric
                                                   LocPrf
                                                             Weight Path
                                                    100
*> 10.10.10.0/24
                    0.0.0.0
                                         0
                                                             32768 ?
                    10.10.10.2
                                         0
                                                    100
                                                              0
                                                                    200 100 ?
*> 30.30.30.0/24
                                         0
                                                    100
                                                                    200 100 ?
                   10.10.10.2
                                                              0
*> 40.40.40.0/24
                  0.0.0.0
                                         0
                                                    100
                                                              32768 ?
```

Total number of prefixes 3

neighbor local-as

Use this command to specify an Autonomous System (AS) number to use with a BGP neighbor.

Use the no parameter with this command to disable this command.

Command Syntax

```
neighbor (A.B.C.D|X:X::X:X|WORD) local-as <1-4294967295> (no-prepend|) (replace-
as|)
no neighbor (A.B.C.D|X:X::X:X|WORD) local-as <1-4294967295>
no neighbor (A.B.C.D|X:X::X:X|WORD) local-as <1-4294967295> no-prepend
no neighbor (A.B.C.D|X:X::X:X|WORD) local-as <1-4294967295> replace-as
```

For BGP unnumbered mode:

```
neighbor WORD local-as <1-4294967295> (no-prepend|) (replace-as|)
no neighbor WORD local-as <1-4294967295>
no neighbor WORD local-as <1-4294967295> no-prepend
no neighbor WORD local-as <1-4294967295> replace-as
```

Parameters

A.B.C.D	Address of the BGP neighbor in IPv4 format
X:X::X:X	Address of the BGP neighbor in IPv6 format
WORD	Name of a BGP peer group created with the neighbor WORD peer-group command. When you specify this parameter, the command applies to all peers in the group.
<1-4294967295>	

A neighbor's AS number when	extended capabilities are configured
-----------------------------	--------------------------------------

- no-prepend Do not prepend local-as to update from EBGP peers
- replace-as Replace actual AS with local AS in the EBGP update
 - Note: The AS number 23456 is a reserved 2-byte AS number. An old BGP speaker (2-byte implementation) should be configured with 23456 as its remote AS number while peering with a non-mappable new BGP speaker (4-byte implementation).

Default

By default, local-as is disabled.

Command Mode

Router mode and Address Family-VRF mode and BGP unnumbered mode

Applicability

This command was introduced before OcNOS version 1.3. The new version of the command with "no-prepend" and "replace-as" option is introduced in OcNOS version 6.4.1.

Example

The following example show a sample configuration command.

```
#configure terminal
(config)#router bgp 100
(config-router)#neighbor 20.1.1.3 remote-as 300
(config-router)#neighbor 20.1.1.3 local-as 200 no-prepend replace-as
(config)#router bgp 100
(config-router)#address-family ipv6 vrf VRF_A
(config-router-af)#neighbor 3ffe:15:15:15:15:10 remote-as 300
(config-router-af)#neighbor 3ffe:15:15:15:15:10 local-as 200
```

For unnumbered peer below configuration is given in BGP unnumbered-mode.

```
(config) #router bgp 100
(config-router) #bgp unnumbered-mode
(config-router-unnum) #neighbor eth1 local-as 300
```

Abbreviations

Acronym	Description
ASN	Autonomous System Number
EBGP	External Border Gateway Protocol

TCP MSS configuration for BGP neighbors

Overview

The manual configuration between the routing devices establishes the BGP peer that creates a TCP session.

This feature enables the configuration of TCP Maximum Segment Size (MSS) that defines the maximum segment size in a single TCP segment during a communication session. TCP segment is a unit of data transmitted in a TCP connection. TCP uses three-way handshake process for initial establishment of a TCP connection. In the three-way handshake process, the sending host sends a SYN packet. Once the receiving host receives the SYN packet, it acknowledges and sends back a SYN-ACK packet to the sending host. Once the sending host receives the SYN-ACK packet from the receiving host, it sends an ACK packet, establishing a reliable connection. In this three way handshake process, the MSS is negotiated between the BGP neighbors.

Three-way handshake

Feature Characteristics

The configuration of the TCP MSS for BGP neighbors helps the neighbors adjust the MSS value of the TCP SYN packet. Configure the TCP MSS through the CLI and NetConf interface. The configurable MSS range is offered from 40-1440 bytes. By default, the MTU value for ethernet cable is 1500 bytes. When configuring the highest MSS value that is 1440, the total MSS becomes 1440 bytes (MSS) plus 20 bytes (IP Header Size), 20 bytes (TCP Header), and Ethernet header which does not cross the default path MTU value.

Benefits

By default, the interface MTU value determines the MSS value of a packet. When the interface MTU value exceeds the default ethernet path MTU value of 1500 bytes, the MSS value also crosses the default ethernet path MTU value, resulting in packet fragmentation. The configuration of the specific MSS value limits the packet size irrespective of the interface MTU value, preventing packet fragmentation.

Prerequisites

Requires the knowledge on TCP handshake and BGP neighbor discovery.

Configuration

This section shows the procedure to configure TCP MSS between BGP peers.

Topology

The below example shows the configuration required to enable BGP on an interface. PE1 and RR1 are routers belonging to the same Autonomous System (AS) with the Autonomous System Number (ASN) as AS100, connecting to network 10.1.1.0/24. First, define the routing process and the ASN to which the routers belong. Then, define BGP neighbors to start exchanging routing updates and configure the TCP MSS for BGP between PE1 and RR1 devices.

TCP MSS for BGP neighbor

Configuration

The configuration shows how to configure the TCP MSS value for the BGP peer.

PE1

PE1#configure terminal	Enter Configuration mode.		
PE1(config)#interface lo	Enter interface mode for loopback.		
PE1(config-if)#ip address 1.1.1.1/32 secondary	Specify the interface IP address 1.1.1.1.		
PE1(config-if)#exit	Exit the interface mode.		
PE1(config)#interface xe1	Enter interface mode for xe1.		
PE1(config-if)#ip address 10.1.1.1/24	Specify the IP address 10.1.1 for the interface.		
PE1(config-if) #exit	Exit interface mode for xe1.		
PE1(config)#router bgp 100	Define the routing process. The number 100 specifies the ASN of PE1.		
PE1(config-router)#bgp router-id 1.1.1.1	Configure bgp router-id same as loopback IP address1.1.1.1.		
PE1(config-router)#neighbor 10.1.1.2 remoteas 100	Define BGP neighbors, and establish a TCP session. 10.1.1.2 is the IP address of the neighbor and 100 is the neighbor's ASN.		

PE1(config-router)#neighbor 10.1.1.2 tcp-mss 800	Configure TCP MSS value.
PE1(config-router)#address-family ipv4 unicast	Enter address-family IPv4 unicast mode.
PE1(config-router-af)#neighbor 10.1.1.2 activate	Activate neighbor with IP address 10.1.1.2 in the IPv4 address family.
PE1(config-router-af)#redistribute connected	Redistributing connected routes inside BGP.
PE1(config-router-af)#exit-address-family	Exit address-family mode.
PE1(config-router)#commit	Commit the candidate configuration to the running configuration.

RR1

RR1#configure terminal	Enter configuration mode.		
RR1(config)#interface lo	Enter interface mode for loopback.		
RR1(config-if)#ip address 2.2.2.2/32 secondary	Specify the interface address 2.2.2.2.		
RR1(config-if)#exit	Exit interface mode.		
RR1(config)#interface xe47	Enter interface mode for xe47.		
RR1(config-if)#ip address 10.1.1.2/24	Specify IP address 10.1.1.2/24 for the interface.		
RR1(config-if)#exit	Exit interface mode for xe47.		
RR1(config)#router bgp 100	Define the routing process. The number 100 specifies the ASN of RR1.		
RR1(config-router)#bgp router-id 2.2.2.2	Configure BGP router-id same as loopback IP address 2.2.2.		
RR1(config-router)#neighbor 10.1.1.1 remoteas 100	Define BGP neighbors, and establish a TCP session. 10.1.1.1 is the ip address of the neighbor and 100 is the neighbor's ASN.		
RR1(config-router)#neighbor 10.1.1.1 passive	Configure BGP neighbor 10.1.1.1 passive.		
RR1(config-router)#address-family ipv4 unicast	Enter address-family IPv4 unicast mode		
RR1(config-router-af)#neighbor 10.1.1.1 activate	Activate the neighbor in the IPv4 address family.		
RR1(config-router-af)#neighbor 10.1.1.1 route-reflector-client	Configure RR1 as the Route-Reflector (RR) and neighbor PE1 as its client.		
RR1(config-router-af)#redistribute connected	Redistributing connected routes inside BGP.		
RR1(config-router-af)#exit-address-family	Exit address-family mode.		
RR1(config-router)#commit	Commit the candidate configuration to the running configuration.		

Validation

PE1

PE1#show bgp summary

TCP MSS configuration for BGP neighbors

BGP router identifier 1.1.1.1, local AS number 100 BGP table version is 1 0 BGP AS-PATH entries 0 BGP community entries Neighbor V AS MsgRcv MsgSen TblVer InQ OutQ Up/Dow State/PfxRcd n 100 171 170 10.1.1.2 4 1 0 0 00:00:11 0 Total number of neighbors 1 Total number of Established sessions 1 PE1# PE1#sh bqp neighbors BGP neighbor is 10.1.1.2, remote AS 100, local AS 100, internal link, peer index : 2 BGP version 4, local router ID 10.1.1.1, remote router ID 10.1.1.2 BGP state = Established, up for 00:07:29 Last read 00:00:24, hold time is 90, keepalive interval is 30 seconds Neighbor capabilities: Route refresh: advertised and received (old and new) Address family IPv4 Unicast: advertised and received Received 43 messages, 1 notifications, 0 in queue Sent 46 messages, 4 notifications, 0 in queue Route refresh request: received 0, sent 0 Minimum time between advertisement runs is 5 seconds For address family: IPv4 Unicast BGP table version 1, neighbor version 1 Index 1, Offset 0, Mask 0x2 AIGP is enabled Community attribute sent to this neighbor (both) Large Community attribute sent to this neighbor 0 accepted prefixes 0 announced prefixes Connections established 6; dropped 5 Local host: 10.1.1.1, Local port: 34738 Foreign host: 10.1.1.2, Foreign port: 179 TCP MSS: (800), Advertise TCP MSS: (800), Send TCP MSS: (800), Receive TCP MSS: (536) Sock FD : (25) Nexthop: 10.1.1.1 Nexthop global: :: Nexthop local: :: BGP connection: non shared network Last Reset: 00:08:45, due to Administratively Reset (Cease Notification sent)

RR1

RR1#show bgp summary BGP router identifier 2.2..2., local AS number 100 BGP table version is 1 0 BGP AS-PATH entries 0 BGP community entries Neighbor V AS MsgRcv MsgSen TblVer InQ Up/Dow OutQ State/PfxRcd n 10.1.1.1 4 100 2 3 1 0 0 00:00:26 0 Total number of neighbors 1 Total number of Established sessions 1 RR1#sh bqp neighbors BGP neighbor is 10.1.1.1, remote AS 100, local AS 100, internal link, peer index : 2 BGP version 4, local router ID 10.1.1.2, remote router ID 10.1.1.1 BGP state = Established, up for 00:08:31 Last read 00:00:24, hold time is 90, keepalive interval is 30 seconds Neighbor capabilities: Route refresh: advertised and received (old and new) Address family IPv4 Unicast: advertised and received Received 46 messages, 4 notifications, 0 in queue Sent 47 messages, 1 notifications, 0 in queue Route refresh request: received 0, sent 0 Minimum time between advertisement runs is 5 seconds For address family: IPv4 Unicast BGP table version 1, neighbor version 1 Index 1, Offset 0, Mask 0x2 AIGP is enabled Community attribute sent to this neighbor (both) Large Community attribute sent to this neighbor 0 accepted prefixes 0 announced prefixes Connections established 6; dropped 5 Local host: 10.1.1.2, Local port: 179 Foreign host: 10.1.1.1, Foreign port: 34738 TCP MSS: (0), Advertise TCP MSS: (1460), Send TCP MSS: (800), Receive TCP MSS: (536)Sock FD : (22) Nexthop: 10.1.1.2 Nexthop global: :: Nexthop local: :: BGP connection: non shared network Last Reset: 00:09:52, due to BGP Notification received

New CLI Commands

neighbor tcp-mss

Use this command to set the BGP TCP MSS of a neighbor.

Use the no parameter with this command to remove a TCP MSS setting from a BGP neighbor.

Command Syntax

neighbor (A.B.C.D|X:X::X:X|WORD) tcp-mss <40-1440>

no neighbor (A.B.C.D|X:X::X:X|WORD) tcp-mss

For BGP unnumbered mode:

neighbor WORD tcp-mss <40-1440>
no neighbor WORD tcp-mss

Parameters

A.B.C.D	Address of the BGP neighbor in an IPv4 format
X:X::X:X	Address of the BGP neighbor in an IPv6 format
WORD	Name of a BGP peer group created with the <i>neighbor WORD peer-group</i> command. When you specify this parameter, the command applies to all peers in the group.
<4U-144U>	Configure TCP MSS

Default

By default, neighbor tcp-mss is disabled.

Command Mode

Router mode, address family-vrf mode and BGP unnumbered mode.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

```
#configure terminal
(config)#router bgp 10
(config-router)#neighbor 10.10.0.72 tcp-mss 1000
(config)#router bgp 100
(config-router)#address-family ipv6 vrf VRF A
(config-router-af)#neighbor 3ffe:15:15:15:15:15:0 tcp-mss 900
```

For unnumbered peer below configuration is given in BGP unnumbered-mode.

```
(config) #router bgp 100
(config-router) #bgp unnumbered-mode
(config-router-unnum) #neighbor eth1 tcp-mss 800
```

Abbreviations

The following are some key abbreviations and their meanings relevant to this document:

Acronym	Description
ACK	Acknowledgment
BGP	Border Gateway Protocol
ТСР	Transmission Control Protocol
MSS	Maximum Segment Size
MTU	Maximum Transmission Unit
SYN	Synchronize

Glossary

The following provides definitions for key terms used throughout this document.

BGP	BGP is an exterior gateway protocol to exchange route information and interconnect various networks on the global internet.
BGP neighbor	BGP neighbors, called peers, are established by manual configuration among routers to create a TCP session on port 179, which exchanges routing information between two systems, defined by their Autonomous System Numbers (ASNs).
MSS	MSS is a TCP parameter that defines the maximum amount of data in a TCP segment that can be transmitted. TCP - TCP is one of the main protocols in the Internet Protocol (IP) suite. It offers a secure and reliable connection between two devices.
ТСР	TCP is one of the main protocols in the Internet Protocol (IP) suite. It offers a secure and reliable connection between two devices.
TCP segment	TCP segment is a unit of data transmitted in a TCP connection. The segment consists of header and payload. The header contains the control information to manage the transmission, and the payload contains the actual data that needs to be transmitted.

TCP MSS configuration for LDP sessions

Overview

Label Distribution Protocol (LDP) uses Transmission Control Protocol (TCP) to establish sessions between the devices. This feature enables the configuration of TCP Maximum Segment Size (MSS) that defines the maximum segment size in a single TCP segment during a communication session.TCP segment is a unit of data transmitted in a TCP connection. TCP uses three-way handshake process for initial establishment of a TCP connection. In the three-way handshake process, the sending host sends a SYN packet. Once the receiving host receives the SYN packet, it acknowledges and sends back a SYN-ACK packet to the sending host. Once the sending host receives the SYN-ACK packet from the receiving host, it sends an ACK packet, establishing a reliable connection. In this three way handshake process, the MSS is negotiated between the LDP neighbors.

	SYN packet ◀	SYN-ACK packet		
Sender			ACK packet	 Receiver

Three-way handshake

Feature Characteristics

The configuration of the TCP MSS for LDP neighbors helps the neighbors adjust the MSS value of the TCP SYN packet. Configure the TCP MSS through the CLI and NetConf interface. The configurable MSS range is offered from 560 to 1440. By default, the MTU value for ethernet cable is 1500 bytes. When configuring the highest MSS value that is 1440, the total MSS becomes 1440 bytes (MSS) plus 20 bytes (IP Header Size), 20 bytes (TCP Header), and Ethernet header which does not cross the default path MTU value.

Note: After configuring TCP MSS, use *clear ldp session* command to apply the MSS for the operational session.

Configure the TCP MSS for the sender. The range of configurable		
MSS is from 560 to 1440		
bytes.		
Sender		Receiver
Configuring TCP MSS		

Benefits

By default, the interface MTU value determines the MSS value of an LDP packet. When the interface MTU value exceeds the default ethernet path MTU value of 1500 bytes, the MSS value also crosses the default ethernet path MTU.

value, resulting in packet fragmentation. The configuration of the specific MSS value limits the packet size irrespective of the interface MTU value, preventing packet fragmentation.[

Prerequisites

Requires the knowledge on TCP handshake and the formation of LDP neighbors.

Configuration

This section shows the procedure to configure TCP MSS for LDP session.

Enable Label Switching

Running LDP on a system requires the following tasks:

- 1. Enabling label-switching on the interface on NSM.
- 2. Enabling LDP on an interface in the LDP daemon.
- 3. Running an Internal Gateway Protocol (IGP), for example, Open Shortest Path first (OSPF), to distribute reachability information within the MPLS cloud.
- 4. Configuring the transport address.
- 5. Configure the TCP MSS neighbor on peer node (Active node).

Topology

Configuration

The below configuration shows how to configure the TCP MSS value for the LDP neighbors.

R1 - NSM

Rl#configure terminal	Enter configure mode.
R1(config)#interface xel	Specify the interface $xe1$ to be configured.
R1(config-if)#ip address 10.10.10.1/24	Assign IP address 10.10.10.1/24 to interface.
R1(config-if)#label-switching	Enable label switching on interface xe1.
R1(config-if)#exit	Exit interface mode.

R1(config)#interface lo	Specify the loopback interface to be configured.
R1(config-if)#ip address 1.1.1.1/32 secondary	Set the IP address of the loopback interface to 1.1.1.1/ 32.
R1(config-if)#commit	Commit the transaction.

R1 - LDP

R1(config)#router ldp	Enter Router mode for LDP.
R1(config-router)#router-id 1.1.1.1	Set the router ID to IP address 1.1.1.1.
R1(config-router)#transport-address ipv4 1.1.1.1	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter ipv6 if you are configuring an IPv6 interface.
R1(config-router)#targeted-peer ipv4 3.3.3.3	Configure targeted peer 3.3.3.3.
R1(config-router-targeted-peer)#exit	Exit targeted peer-mode.
R1(config-router)#exit	Exit the router mode and return to the configure mode.
R1(config)#interface xel	Enter interface mode xe1.
R1(config-if)#enable-ldp ipv4	Enable LDP on xe1.
R1(config-if)#commit	Commit the transaction.

R1 - OSPF

R1(config)#router ospf 100	Configure the routing process and specify the process ID 100. The process ID should be a unique positive integer identifying the routing process.
R1(config-router)#network 10.10.10.0/24 area 0	Define the interface $10.10.10.0/24$, on which OSPF runs and associate the area ID 0 with the interface.
R1(config-router)#network 1.1.1.1/32 area 0	Define the interface $1.1.1.1/32$, on which OSPF runs and associate the area ID 0 with the interface.
R1(config-router)#commit	Commit the transaction.

R2 - NSM

R2#configure terminal	Enter configure mode.
R2(config)#interface lo	Specify the loopback interface to be configured.
R2(config-if)#ip address 2.2.2.2/32 secondary	Set the IP address of the loopback interface to 2.2.2.2/ 32.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xel	Specify the interface $x e 1$ to be configured.
R2(config-if)#ip address 20.20.20.1/24	Assign IP address 20.20.20.1/24 to interface.
R2(config-if)#label-switching	Enable label switching on interface xe1.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xe2	Specify the interface $xe2$ to be configured.

R2(config-if)#ip address 10.10.10.2/24	Assign IP address 10.10.10.2/24 to interface.
R2(config-if)#label-switching	Enable label switching on interface xe2.
R2(config-if)#commit	Commit the transaction.

R2 - LDP

R2(config)#router ldp	Enter Router mode.
R2(config-router) #router-id 2.2.2.2	Set the router ID to IP address 2.2.2.2.
R2(config-router)#transport-address ipv4 2.2.2.2	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter ipv6 if you are configuring an IPv6 interface.
R2(config-router)#neighbor 1.1.1.1 tcp-mss 600	Configure the TCP MSS value on peer node which have active side only.
R2(config-router)#exit	Exit router mode and return to configure mode.
R2(config)#interface xel	Specify the interface xe1 to be configured.
R2(config-if)#enable-ldp ipv4	Enable LDP on a specified interface xe1.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xe2	Specify the interface $xe2$ to be configured.
R2(config-if)#enable-ldp ipv4	Enable LDP on a specified interface xe2.
R2(config-if)#commit	Commit the transaction.

R2 - OSPF

R2(config)#router ospf 100	Configure the routing process and specify the process ID 100. The process ID should be a unique positive integer identifying the routing process.
R2(config-router)#network10.10.10.0/24 area 0	Define the interfaces $10.10.10.0/24$, on which OSPF runs and associate the area ID 0 with them.
R2(config-router)#network 20.20.20.0/24 area 0	Define the interfaces $20.20.20.0/24$, on which OSPF runs and associate the area ID 0 with them.
R2(config-router)#network 2.2.2.2/32 area 0	Define the interfaces $2.2.2.2/32$, on which OSPF runs and associate the area ID 0 with them.
R2(config-router)#commit	Commit the transaction.

R3 - NSM

R3#configure terminal	Enter configure mode.
R3(config)#interface lo	Specify the loopback interface to be configured.
R3(config-if)#ip address 3.3.3.3/32 secondary	Set the IP address of the loopback interface to 3.3.3.3/ 32.
R3(config-if)#exit	Exit interface mode.
R3(config)#interface xel	Specify the interface $xe1$ to be configured.

R3(config-if)#ip address 20.20.20.2/24	Set the IP address of the interface to 20.20.20.2/24.
R3(config-if)#label-switching	Enable label switching on interface xe1.
R3(config-if)#commit	Commit the transaction.

R3 - LDP

R3(config)#router ldp	Enter Router mode.
R3(config-router)#router-id 3.3.3.3	Set the router ID for IP address 3.3.3.3.
R3(config-router)#transport-address ipv4 3.3.3.3	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter <i>ipv6</i> if you are configuring an IPv6 interface.
R3(config-router)#neighbor 2.2.2.2 tcp-mss 650	Configure the TCP MSS value on peer node which have active side only.
R3(config-router)#targeted-peer ipv4 1.1.1.1	Configure targeted peer.
R3(config-router-targeted-peer)#exit	Exit targeted peer-mode.
R3(config-router)#exit	Exit the router mode and return to the configure mode.
R3(config)#interface xel	Enter interface mode xe1.
R3(config-if)#enable-ldp ipv4	Enable LDP on xe1.
R3(config-if)#commit	Commit the transaction.

R3 - OSPF

R3(config)#router ospf 100	Configure the routing process and specify the Process ID 100. The Process ID should be a unique positive integer identifying the routing process.
R3(config-router)#network 20.20.20.0/24 area 0	Define the interfaces $20.20.20.0/24$, on which OSPF runs and associate the area ID 0 with them.
R3(config-router)#network 3.3.3.3/32 area 0	Define the interfaces $3.3.3.3/32$, on which OSPF runs and associate the area ID 0 with them.
R3(config-router)#commit	Commit the transaction.

Validation

```
R3#show ldp session
Codes: m - MD5 password is not set/unset.
g - GR configuration not set/unset.
t - TCP MSS not set/unset.
Session has to be cleared manually
Code Peer IP Address IF Name My Role State KeepAlive UpTime
2.2.2.2 xe1 Active OPERATIONAL 30 00:03:06
```

TCP MSS configuration for LDP sessions

1.1.1.1 R3#show ldp tarc	xel geted-peer count	Active	OPERATIONAL	30	00:03:06
Num Targeted Pee	ers: 1	[UP: 1]			
PE2#show ldp ses	sion count				
Multicast Peers	: 1	[UP: 1]			
Targeted Peers Total Sessions	: 1 : 2	[UP: 1] [UP: 2]			
R3#show ldp rout	es.				
Prefix Addr	Nexthop Add:	r Intf	Owner		
1.1.1/32	20.20.20.1	xe1	ospf		
2.2.2/32	20.20.20.1	xe1	ospf		
3.3.3/32	0.0.0.0	lo	connected		
10.10.10.0/24	20.20.20.1	xe1	ospf		
20.20.20.0/24	0.0.0.0	xel	connected		
R3#show ldp fec-	ipv4 count				
Num. IPv4 FEC(s)	: 5				
R3#show ldp sess	sion 2.2.2.2				
Session state	:	OPERATIONAL			
Session role	:	Active			
TCP Connection	:	Established			
IP Address for 7	CP :	2.2.2.2			
Interface being	used :	xel			
Peer LDP ID	:	2.2.2.2:0			
Preferred Peer LDP Password : Not		Not Set			
Adjacencies	:	20.20.20.1			
Advertisement mode : Downstream Unse			nsolicited		
Label retention	mode :	Liberal			
Graceful Restart	:	Not Capable			
Keepalive Timeou	it :	30			
Reconnect Interv	ral :	15			
Configured TCP M	ISS :	650			
Applied TCP MSS	:	650			
Preferred TCP MS	SS :	NA			
Address List red	ceived :	2.2.2.2			
		10.10.10.2			
Received Labels	: Fec	Labe	l Mar	os To	
-	IPV4:20.20.20.0	/24 impl	-null nor	ie	
	IPV4:10.10.10.0	/24 impl	-null nor	ne	
	IPV4:2.2.2/32	impl	-null nor	ne	
	IPV4:1.1.1.1/32	2560	0 nor	ne	
Sent Labels :	Fec	Labe.	l Mar	s To	
	IPV4:20.20.20.0	/24 impl	-null nor	ie	
	IPV4:3.3.3.3/32	impl	-null nor	ne	

R2#show ldp sess	sion						
Codes: m - MD5 p	bassword is not	set/unse	t.				
q - GR co	onfiguration not	t set/uns	et.				
t - TCP I	MSS not set/unse	et.					
Session 1	has to be cleare	ed manual	lv				
Code Peer IP Ad	ddress IF N	Name M	v Role	State	Kee	epAlive	UpTime
3333	xe1	Pa	ssive	OPERATION	AT. 30	0 00.	•06•10
1 1 1 1	xe2	Act	ive	OPERATIONA	т. 30	00.0)6•10
R2#show ldp ses	sion count	1100	110	01 11011 10101		00.0	0.10
Multicast Peers	5 : 2	[UP:	21				
Targeted Peers	: 0	[UP:	01				
Total Sessions	• 2	[1]P.	21				
	• -						
R2#show ldp rout	tes						
Prefix Addr	Nexthop Add	dr In	tf	Owner			
1.1.1/32	10.10.10.1	xe	2	ospf			
2.2.2.2/32	0.0.0.0	10		connect	ed		
3.3.3/32	20.20.20.2	xe	1	ospf			
10.10.10.0/24	0.0.0.0	xe	2	connecte	d		
20.20.20.0/24	0.0.0.0	xe	1	connect	ed		
R2#show ldp sess	sion 1.1.1.1						
Session state	:	: OPERATI	ONAL				
Session role	:	: Active					
TCP Connection	:	: Establi	shed				
IP Address for TCP : 1.1.1.1							
Interface being used : xe2		: xe2					
Peer LDP ID : 1.1		: 1.1.1.1	:0				
Preferred Peer LDP Password : No		: Not Set					
Adjacencies : 1		: 10.10.1	0.1				
Advertisement mode : Do		: Downstr	eam Un	solicited			
Label retention	mode	: Liberal					
Graceful Restart	t :	: Not Cap	able				
Keepalive Timeou	ut :	: 30					
Reconnect Interv	val	: 15					
Configured TCP N	ASS	: 600					
Applied TCP MSS	:	: 600					
Preferred TCP MS	SS	: NA					
Address List received : 1.1.		: 1.1.1.1					
		10.10.1	0.1				
		48.48.4	8.48				
Received Labels	: Fec		Label]	Maps To	0	
	IPV4:10.10.10.0	0/24	impl-	null	none		
	IPV4:1.1.1.1/32	2	impl-	null	25600		
Sent Labels :	Fec		Label]	Maps To	0	
	IPV4:20.20.20.0	0/24	impl-	null	none		
	IPV4:10.10.10.0)/24	impl-	null	none		

-	LPV4:3.3.3	.3/32	25601	ir	mpl-null	1
-	IPV4:2.2.2	.2/32	impl-n	null no	one	
R1						
R1#show ldp sess	ion					
Codes: m - MD5 pa	assword is	not set/	unset.			
g – GR cor	nfiguration	n not set,	/unset.			
t - TCP MS	SS not set	/unset.				
Session ha	as to be c	leared man	nually			
Code Peer IP Ado	dress	IF Name	My Role	State	Keep	Alive UpTime
2.2.2.2	:	xel	Passive	OPERATIONA	L 30	00:07:12
3.3.3.3	:	xel	Passive	OPERATIONA	L 30	00:07:12
R1#show ldp sess:	ion count					
Multicast Peers	• 1					
Targeted Peers	: 1		[UP: 1]			
Total Sessions	: 2		[UP: 2]			
R1#show ldp targe	eted-peer	count				
Num Targeted Peer	cs: 1	[UP:	1]			
R1#show ldp route	es					
Prefix Addr	Nextho	o Addr	Intf	Owner		
1.1.1/32	0.0.0.	C	lo	connected	d	
2.2.2/32	10.10.	10.2	xel	ospf		
3.3.3/32	10.10.	10.2	xel	ospf		
10.10.10.0/24	0.0.0.	C	xel	connected	d	
20.20.20.0/24	10.10.	10.2	xel	ospf		
R1#show ldp fec	,					
LSR codes : E,	N - LSR i	s egress/1	non-egress	for this FEG	С,	
L	- LSR rec	eived a la	abel for th	ils FEC,		
>	- LSR WII.	l use thi:	s route ior	Cut Ishal	ET O	Nouthor Jolda
FEC	Code	Session		Out Label	ELC	Nexthop Addr
$\perp \cdot \perp \cdot \perp \cdot \perp / 32$	L >	non-exi:	stellt	inone	NO	
2.2.2.2/32		2.2.2.2		25601	NO	10.10.10.2
$10 \ 10 \ 10 \ 0/24$		2.2.2.2		20001 impl_pull	NO	10.10.10.2
10.10.10.0/24	E >	2.2.2.2	stont		No	connected
20 20 20 0/24	NT.>	2 2 2 2 2	3 . EII .	impl-null	NO	10 10 10 2
<u>48</u> <u>48</u> <u>48</u> <u>48</u> <u>48</u> <u>48</u> <u>48</u> <u>48</u>	E >	2.2.2.2	stont		No	
10.10.10.10/32	ш /	HOH CAT		110115	INO	connected

Configure TCP MSS on ALL neighbor

R1 - NSM

Rl#configure terminal	Enter configure mode.
R1(config)#interface xel	Specify the interface $xe1$ to be configured.
R1(config-if)#ip address 10.10.10.1/24	Assign IP address 10.10.10.1/24 to interface.
R1(config-if)#label-switching	Enable label switching on interface xe1.
R1(config-if)#exit	Exit interface mode.
R1(config)#interface lo	Specify the loopback interface to be configured.
R1(config-if)#ip address 1.1.1.1/32 secondary	Set the IP address of the loopback interface to 1.1.1.1/32.
R1(config-if)#commit	Commit the transaction.

R1 - LDP

R1(config)#router ldp	Enter Router mode for LDP.		
R1(config-router)#router-id 1.1.1.1	Set the router ID to IP address 1.1.1.1.		
R1(config-router)#transport-address ipv4 1.1.1.1	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.		
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter ipv6 if you are configuring an IPv6 interface.		
R1(config-router)#targeted-peer ipv4 3.3.3.3	Configure targeted peer.		
R1(config-router)#neighbor all tcp-mss 700	Configure the TCP MSS value with all neighbor.		
R1(config-router-targeted-peer)#exit	Exit-targeted-peer-mode.		
R1(config-router)#exit	Exit the Router mode and return to the Configure mode.		
R1(config)#interface xel	Enter interface mode xe1.		
R1(config-if)#enable-ldp ipv4	Enable LDP on xe1.		
R1(config-if)#commit	Commit the transaction.		

R1 - OSPF

R1(config)#router ospf 100	Configure the routing process and specify the process ID (100). The process ID should be a unique positive integer identifying the routing process.
R1(config-router)#network 10.10.10.0/24 area 0	Define the interface $10.10.10.0/24$, on which OSPF runs and associate the area ID (0) with the interface.
R1(config-router)#network 1.1.1.1/32 area 0	Define the interface $1.1.1.1/32$, on which OSPF runs and associate the area ID (0) with the interface.
R1(config-router)#commit	Commit the transaction.

R2 - NSM

R2#configure terminal	Enter configure mode.
R2(config)#interface lo	Specify the loopback (lo) interface to be configured.
R2(config-if)#ip address 2.2.2.2/32 secondary	Set the IP address of the loopback interface to 2.2.2.2/ 32.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xel	Specify the interface $xe1$ to be configured.
R2(config-if)#ip address 20.20.20.1/24	Assign IP address 20.20.20.1/24 to interface.
R2(config-if)#label-switching	Enable label switching on interface xe1.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xe2	Specify the interface $xe2$ to be configured.
R2(config-if)#ip address 10.10.10.2/24	Assign IP address 10.10.10.2/24 to interface.
R2(config-if)#label-switching	Enable label switching on interface xe2.
R2(config-if)#commit	Commit the transaction.

R2 - LDP

R2(config)#router ldp	Enter Router mode.		
R2(config-router) #router-id 2.2.2.2	Set the router ID to IP address 2.2.2.2.		
R2(config-router)#transport-address ipv4 2.2.2.2	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.		
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter ipv6 if you are configuring an IPv6 interface.		
R2(config-router)#neighbor all tcp-mss 710	Configure the TCP MSS value with all neighbor.		
R2(config-router)#exit	Exit Router mode and return to configure mode.		
R2(config)#interface xel	Specify the interface $xe1$ to be configured.		
R2(config-if)#enable-ldp ipv4	Enable LDP on a specified interface xe1.		
R2(config-if)#exit	Exit interface mode.		
R2(config)#interface xe2	Specify the interface $xe2$ to be configured.		
R2(config-if)#enable-ldp ipv4	Enable LDP on a specified interface xe2.		
R2(config-if)#commit	Commit the transaction.		

R2 - OSPF

R2(config)#router ospf 100	Configure the routing process and specify the Process ID (100). The Process ID should be a unique positive integer identifying the routing process.
R2(config-router)#network 10.10.10.0/24 area 0	Define the interfaces $10.10.10.0/24$, on which OSPF runs and associate the area ID (0) with them.
R2(config-router)#network 20.20.20.0/24 area	Define the interfaces $20.20.20.0/24$, on which OSPF runs and associate the area ID (0) with them.

R2(config-router)#network 2.2.2.2/32 area 0	Define the interfaces $2.2.2.2/32$, on which OSPF runs and associate the area ID (0) with them.
R2(config-router)#commit	Commit the transaction.

R3 - NSM

R3#configure terminal	Enter configure mode.
R3(config)#interface lo	Specify the loopback interface to be configured.
R3(config-if)#ip address 3.3.3.3/32 secondary	Set the IP address of the loopback interface to 3.3.3.3/ 32.
R3(config-if)#exit	Exit interface mode.
R3(config)#interface xel	Specify the interface xe1 to be configured.
R3(config-if)#ip address 20.20.20.2/24	Set the IP address of the interface to 20.20.20.2/24.
R3(config-if)#label-switching	Enable label switching on interface xe1.
R3(config-if)#commit	Commit the transaction.

R3 - LDP

R3(config)#router ldp	Enter Router mode.
R3(config-router)#router-id 3.3.3.3	Set the router ID for IP address 3.3.3.3.
R3(config-router)#transport-address ipv4 3.3.3	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter <i>ipv6</i> if you are configuring an IPv6 interface.
R3(config-router)#neighbor all tcp-mss 720	Configure the TCP MSS value with all neighbor.
R3(config-router)#targeted-peer ipv4 1.1.1.1	Configure targeted peer.
R3(config-router-targeted-peer)#exit	Exit-targeted-peer-mode.
R3(config-router)#exit	Exit the Router mode and return to the Configure mode.
R3(config)#interface xel	Enter interface mode.
R3(config-if)#enable-ldp ipv4	Enable LDP on xe1.
R3(config-if)#commit	Commit the transaction.

R3 - OSPF

R3(config)#router ospf 100	Configure the routing process and specify the Process ID (100). The Process ID should be a unique positive integer identifying the routing process.
R3(config-router)#network 20.20.20.0/24 area 0	Define the interfaces $20.20.20.0/24$, on which OSPF runs and associate the area ID (0) with them.
R3(config-router)#network 3.3.3.3/32 area 0	Define the interfaces $3.3.3.3/32$, on which OSPF runs and associate the area ID (0) with them.
R3(config-router)#commit	Commit the transaction.

Validation

```
R1#show ldp session
Codes: m - MD5 password is not set/unset.
      g - GR configuration not set/unset.
      t - TCP MSS not set/unset.
      Session has to be cleared manually
Code Peer IP Address IF Name My Role State KeepAlive UpTime
                                Passive OPERATIONAL 30
      2.2.2.2
                       xe1
                                                             00:11:22
      3.3.3.3
                      xel
                                 Passive OPERATIONAL 30
                                                             00:11:22
R1#show ldp session 2.2.2.2
Session state
                          : OPERATIONAL
Session role
                           : Passive
TCP Connection
                          : Established
IP Address for TCP
                          : 2.2.2.2
Interface being used
                          : xel
                          : 2.2.2.2:0
Peer LDP ID
Preferred Peer LDP Password : Not Set
Adjacencies
                   : 10.10.10.2
Advertisement mode
                           : Downstream Unsolicited
Label retention mode
                          : Liberal
Graceful Restart
                           : Not Capable
                          : 30
Keepalive Timeout
                           : 15
Reconnect Interval
                          : 700
Configured TCP MSS
                           : 700
Applied TCP MSS
Preferred TCP MSS
                           : NA
                          : 2.2.2.2
Address List received
                             10.10.10.2
                             20.20.20.1
Received Labels :
                     Fec
                                    Label
                                                   Maps To
              IPV4:20.20.20.0/24
                                   impl-null
                                                   none
              IPV4:10.10.10.0/24
                                    impl-null
                                                   none
              IPV4:3.3.3.3/32
                                    25601
                                                   none
              IPV4:2.2.2/32
                                   impl-null
                                                  none
Sent Labels :
            Fec
                                    Label
                                                   Maps To
              IPV4:10.10.10.0/24
                                   impl-null
                                                   none
              IPV4:1.1.1.1/32
                                    impl-null
                                                  none
R1#show ldp session 3.3.3.3
Session state
                          : OPERATIONAL
Session role
                          : Passive
TCP Connection
                          : Established
IP Address for TCP
                          : 3.3.3.3
Interface being used
                          : xel
Peer LDP ID
                          : 3.3.3.3:0
Preferred Peer LDP Password : Not Set
Adjacencies
                          : 3.3.3.3
Advertisement mode
                           : Downstream Unsolicited
```

Label retention mode		: L:	iberal		
Graceful Restart		: No	ot Capable		
Keepalive Timeout		: 30	0		
Reconnect Interval		: 15	5		
Configured TCP MSS		: 70	00		
Applied TCP MSS		: 70	00		
Preferred TCP MSS		: NA	A		
Address List received		: 3	.3.3.3		
		20	0.20.20.2		
Received Labels :	Fec		Label	Maps	То
Sent Labels : Fec			Label	Maps	То

R2

R2#show ldp session Codes: m - MD5 password is not set/unset. g - GR configuration not set/unset. t - TCP MSS not set/unset. Session has to be cleared manually Code Peer IP Address IF Name My Role KeepAlive UpTime State 3.3.3.3 xe1 Passive OPERATIONAL 30 00:13:39 1.1.1.1 xe2 Active OPERATIONAL 30 00:13:39 R2#show ldp session 3.3.3.3 Session state : OPERATIONAL Session role : Passive TCP Connection : Established IP Address for TCP : 3.3.3.3 Interface being used : xel : 3.3.3.3:0 Peer LDP ID Preferred Peer LDP Password : Not Set Adjacencies : 20.20.20.2 Advertisement mode : Downstream Unsolicited Label retention mode : Liberal Graceful Restart : Not Capable Keepalive Timeout : 30 : 15 Reconnect Interval Configured TCP MSS : 710 : 710 Applied TCP MSS Preferred TCP MSS : NA Address List received : 3.3.3.3 20.20.20.2 Received Labels : Fec Label Maps To IPV4:20.20.20.0/24 impl-null none IPV4:3.3.3.3/32 25601 impl-null Sent Labels : Fec Label Maps To IPV4:20.20.20.0/24 impl-null none IPV4:10.10.10.0/24 impl-null none IPV4:2.2.2/32 impl-null none IPV4:1.1.1.1/32 25600 impl-null R2#show ldp session 1.1.1.1 Session state : OPERATIONAL

Session role		:	Active		
TCP Connection		:	Establis	shed	
IP Address for 7	TCP	:	1.1.1.1		
Interface being	used	:	xe2		
Peer LDP ID		:	1.1.1.1	:0	
Preferred Peer 1	LDP Password	:	Not Set		
Adjacencies		:	10.10.10	0.1	
Advertisement mo	ode	:	Downstre	eam Unsolicited	
Label retention	mode	:	Liberal		
Graceful Restart	5	:	Not Capa	able	
Keepalive Timeou	ıt	:	30		
Reconnect Interv	val	:	15		
Configured TCP N	4SS	:	710		
Applied TCP MSS		:	700		
Preferred TCP MS	SS	:	NA		
Address List red	ceived	:	1.1.1.1		
			10.10.10	0.1	
Received Labels	: Fec			Label	Maps To
	IPV4:48.48.48.	. 48	3/32	impl-null	none
	IPV4:10.10.10.	. 0 ,	/24	impl-null	none
	IPV4:1.1.1/3	32		impl-null	25600
Sent Labels :	Fec			Label	Maps To
	IPV4:20.20.20.	.0,	/24	impl-null	none
	IPV4:10.10.10.	.0,	/24	impl-null	none
	IPV4:3.3.3.3/3	32		25601	impl-null
	IPV4:2.2.2.2/3	32		impl-null	none

R3#show ldp sess	ion 2.2.2.2				
Session state		:	OPERATIONAL		
Session role		:	Active		
TCP Connection		:	Established		
IP Address for T	'CP	:	2.2.2.2		
Interface being	used	:	xel		
Peer LDP ID		:	2.2.2.2:0		
Preferred Peer I	JDP Password	:	Not Set		
Adjacencies		:	20.20.20.1		
Advertisement mc	de	:	Downstream Unsolicited		
Label retention	mode	:	Liberal		
Graceful Restart		:	Not Capable		
Keepalive Timeou	ıt	:	30		
Reconnect Interv	ral	:	15		
Configured TCP M	ISS	:	720		
Applied TCP MSS		:	710		
Preferred TCP MS	S	:	NA		
Address List rec	ceived	:	2.2.2.2		
			10.10.10.2		
			20.20.20.1		
Received Labels	: Fec		Label	Maps	То
	IPV4:20.20.20	.0,	/24 impl-null	none	

	IPV4:10.10	.10.0,	/24	impl-null	none	
	IPV4:2.2.2	.2/32		impl-null	none	
	IPV4:1.1.1	.1/32		25600	none	
Sent Labels :	Fec			Label	Maps	То
	IPV4:20.20	.20.0/	/24	impl-null	none	
	IPV4:3.3.3	.3/32		impl-null	none	
R3#show ldp sess	sion 1.1.1.	1				
Session state		:	OPERATIO	DNAL		
Session role		:	Active			
TCP Connection		:	Establis	shed		
IP Address for 7	CP	:	1.1.1.1			
Interface being	used	:	xe1			
Peer LDP ID		:	1.1.1.1:	: 0		
Preferred Peer I	DP Passwor	d :	Not Set			
Adjacencies		:	1.1.1.1			
Advertisement mo	ode	:	Downstre	eam Unsolicited		
Label retention	mode	:	Liberal			
Graceful Restart	-	:	Not Capa	able		
Keepalive Timeou	ıt	:	30			
Reconnect Interv	val	:	15			
Configured TCP N	ISS	:	720			
Applied TCP MSS		:	700			
Preferred TCP MS	SS	:	NA			
Address List red	ceived	:	1.1.1.1			
			10.10.10	0.1		
Received Labels	: Fe	C		Label	Maps	То
Sent Labels :	Fec			Label	Maps	То

Configuration of TCP MSS with Auto-targeted

R1 - NSM

R1#configure terminal	Enter configure mode.
R1(config)#interface xel	Specify the interface xe1 to be configured.
R1(config-if)#ip address 10.10.10.1/24	Assign IP address 10.10.10.1/24 to interface.
R1(config-if)#label-switching	Enable label switching on interface xe1.
R1(config-if)#exit	Exit interface mode.
R1(config)#interface lo	Specify the loopback interface to be configured.
R1(config-if)#ip address 1.1.1.1/32 secondary	Set the IP address of the loopback interface to 1.1.1.1/32.
R1(config-if)#commit	Commit the transaction.

R1 - LDP

R1(config)#router ldp	Enter Router mode for LDP.
R1(config-router)#router-id 1.1.1.1	Set the router ID to IP address 1.1.1.1.

R1(config-router)#transport-address ipv4 1.1.1.1	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter ipv6 if you are configuring an IPv6 interface.
R1(config-router)#targeted-peer ipv4 3.3.3.3	Configure targeted peer.
R1 (config-router-targeted-peer) #exit	Exit-targeted-peer-mode.
R1(config-router)#exit	Exit the Router mode and return to the configure mode.
R1(config)#interface xel	Enter interface mode.
R1(config-if)#enable-ldp ipv4	Enable LDP on xe1.
R1(config-if)#commit	Commit the transaction.

R1 - OSPF

R1(config)#router ospf 100	Configure the routing process and specify the process ID (100). The process ID should be a unique positive integer identifying the routing process.
R1(config-router)#network 10.10.10.0/24 area 0	Define the interface $10.10.10.0/24$, on which OSPF runs and associate the area ID (0) with the interface.
R1(config-router)#network 1.1.1.1/32 area 0	Define the interface $1.1.1.1/32$, on which OSPF runs and associate the area ID (0) with the interface.
R1(config-router)#commit	Commit the transaction.

R2 - NSM

R2#configure terminal	Enter configure mode.
R2(config)#interface lo	Specify the loopback interface to be configured.
R2(config-if)#ip address 2.2.2.2/32 secondary	Set the IP address of the loopback interface to 2.2.2.2/ 32.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xel	Specify the interface $x e1$ to be configured.
R2(config-if)#ip address 20.20.20.1/24	Assign IP address 20.20.20.1/24 to interface.
R2(config-if)#label-switching	Enable label switching on interface xe1.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xe2	Specify the interface $xe2$ to be configured.
R2(config-if)#ip address 10.10.10.2/24	Assign IP address 10.10.10.2/24 to interface.
R2(config-if)#label-switching	Enable label switching on interface xe2.
R2(config-if)#commit	Commit the transaction.

R2 - LDP

R2(config)#router ldp	Enter Router mode.
R2(config-router)#router-id 2.2.2.2	Set the router ID to IP address 2.2.2.2.

R2(config-router)#transport-address ipv4 2.2.2.2	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.		
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter ipv6 if you are configuring an IPv6 interface.		
R2(config-router)#neighbor auto-targeted tcp-mss 800	Configure the TCP MSS value on all auto-targeted neighbors.		
R2(config-router)#exit	Exit Router mode and return to configure mode.		
R2(config)#interface xel	Specify the interface $x e 1$ to be configured.		
R2(config-if)#enable-ldp ipv4	Enable LDP on a specified interface xe1.		
R2(config-if)#exit	Exit interface mode.		
R2(config)#interface xe2	Specify the interface $xe2$ to be configured.		
R2(config-if)#enable-ldp ipv4	Enable LDP on a specified interface xe2.		
R2(config-if)#commit	Commit the transaction.		

R2 - OSPF

R2(config)#router ospf 100	Configure the routing process and specify the Process ID (100). The Process ID should be a unique positive integer identifying the routing process.
R2(config-router)#network 10.10.10.0/24 area 0	Define the interfaces $10.10.0/24$, on which OSPF runs and associate the area ID (0) with them.
R2(config-router)#network 20.20.20.0/24 area 0	Define the interfaces 20.20.20.0/24, on which OSPF runs and associate the area ID (0) with them.
R2(config-router)#network 2.2.2.2/32 area 0	Define the interfaces $2.2.2.2/32$, on which OSPF runs and associate the area ID (0) with them.
R2(config-router)#commit	Commit the transaction.

R3 - NSM

R3#configure terminal	Enter configure mode.
R3(config)#interface lo	Specify the loopback interface to be configured.
R3(config-if)#ip address 3.3.3.3/32 secondary	Set the IP address of the loopback interface to 3.3.3.3/ 32.
R3(config-if)#exit	Exit interface mode.
R3(config)#interface xel	Specify the interface $xe1$ to be configured.
R3(config-if)#ip address 20.20.20.2/24	Set the IP address of the interface to 20.20.20.2/24.
R3(config-if)#label-switching	Enable label switching on interface xe1.
R3(config-if)#commit	Commit the transaction.

R3 - LDP

R3(config)#router ldp	Enter Router mode.
R3(config-router)#router-id 3.3.3.3	Set the router ID for IP address 3.3.3.3.

R3(config-router)#transport-address ipv4 3.3.3	Configure the transport address to be used for a TCP session over which LDP will run on an IPv4 interface.		
	Note: It is preferable to use the loopback address as transport address. In addition, use the parameter ipv6 if you are configuring an IPv6 interface.		
R3(config-router)#neighbor auto-targeted tcp-mss 810	Configure the TCP MSS value on all auto-targeted neighbors.		
R3(config-router)#targeted-peer ipv4 1.1.1.1	Configure targeted peer.		
R3(config-router-targeted-peer)#exit	Exit-targeted-peer-mode.		
R3(config-router)#exit	Exit the Router mode and return to the configure mode.		
R3(config)#interface xel	Enter interface mode xe1.		
R3(config-if)#enable-ldp ipv4	Enable LDP on xe1.		
R3(config-if)#commit	Commit the transaction.		

R3 - OSPF

R3(config)#router ospf 100	Configure the routing process and specify the Process ID (100). The Process ID should be a unique positive integer identifying the routing process.
R3(config-router)#network 20.20.20.0/24 area 0	Define the interfaces $20.20.20.0/24$, on which OSPF runs and associate the area ID (0) with them.
R3(config-router)#network 3.3.3.3/32 area 0	Define the interfaces $3.3.3.3/32$, on which OSPF runs and associate the area ID (0) with them.
R3(config-router)#commit	Commit the transaction.

Validation

```
R1#show ldp session
Codes: m - MD5 password is not set/unset.
      g - GR configuration not set/unset.
      t - TCP MSS not set/unset.
      Session has to be cleared manually
Code Peer IP Address IF Name My Role State KeepAlive UpTime
      2.2.2.2
                     xel Passive OPERATIONAL 30 00:00:03
                                                          00:00:03
      3.3.3.3
                               Passive OPERATIONAL 30
                     xel
R1#show ldp targeted-peers
IP Address Interface
3.3.3.3
                 xe1
R1#show ldp session 3.3.3.3
            : OPERATIONAL
Session state
Session role
                         : Passive
TCP Connection
                         : Established
IP Address for TCP
                         : 3.3.3.3
Interface being used
                          : xel
```

Peer LDP ID		:	3.3	.3.3:0		
Preferred Peer I	JDP Password	:	Not	Set		
Adjacencies		:	3.3	.3.3		
Advertisement mo	ode	:	Dowr	nstream Unsolicited		
Label retention	mode	:	Libe	eral		
Graceful Restart	-	:	Not	Capable		
Keepalive Timeou	ıt	:	30			
Reconnect Interv	val	:	15			
Configured TCP M	ISS	:	Not	configured		
Applied TCP MSS		:	810			
Preferred TCP MS	SS	:	NA			
Address List red	ceived	:	3.3	.3.3		
			20.2	20.20.2		
Received Labels	: Fec			Label	Maps	То
	IPV4:20.20.20.	0 /	24	25604	none	
	IPV4:3.3.3.3/3	2		25603	none	
	IPV4:10.10.10.	0 /	24	25602	none	
	IPV4:2.2.2/3	2		25601	none	
	IPV4:1.1.1.1/3	2		25600	none	
Sent Labels :	Fec			Label	Maps	То
	IPV4:10.10.10.	0 /	24	25604	none	
	IPV4:1.1.1.1/3	2		25603	none	
	IPV4:20.20.20.	0/	24	25602	impl-	null
	IPV4:3.3.3.3/3	2		25601	25601	_
	IPV4:2.2.2/3	2		25600	impl-	null

R2

R2#show ldp session Codes: m - MD5 password is not set/unset. g - GR configuration not set/unset. t - TCP MSS not set/unset. Session has to be cleared manually Code Peer IP Address IF Name My Role State KeepAlive UpTime 3.3.3.3 xe1 Passive OPERATIONAL 30 00:00:04 30 1.1.1.1 00:00:04 xe2 Active OPERATIONAL R2#show ldp targeted-peers R2#show ldp session 3.3.3.3 Session state : OPERATIONAL Session role : Passive TCP Connection : Established IP Address for TCP : 3.3.3.3 Interface being used : xel Peer LDP ID : 3.3.3.3:0 Preferred Peer LDP Password : Not Set Adjacencies : 20.20.20.2 Advertisement mode : Downstream Unsolicited Label retention mode : Liberal Graceful Restart : Not Capable Keepalive Timeout : 30 Reconnect Interval : 15

Configured TCP MSS		:	Not con	figured					
Applied TCP MSS		:	1460	1460					
Preferred TCP MS	SS	:	NA	NA					
Address List red	ceived	:	: 3.3.3.3						
			20.20.2	0.2					
Received Labels	:	Fec		Label	Maps To				
	IPV4:20.	20.20.0	/24	impl-null	none				
	IPV4:3.3	3.3.3/32		impl-null	25601				
Sent Labels :	Fec			Label	Maps To				
	IPV4:20.	20.20.0	/24	impl-null	none				
	IPV4:10.	10.10.0	/24	impl-null	none				
	IPV4:2.2	2.2.2/32		impl-null	none				
	IPV4:1.1	1.1.1/32		25600	impl-null				

R3#show ldp sess	sion							
Codes: m - MD5 p	password is	not s	set/un	set.				
g - GR co	onfiguratio	n not	set/u	nset.				
t - TCP N	4SS not set	/unset	Ξ.					
Session h	nas to be c	leared	d manua	ally				
Code Peer IP Ad	ldress	IF Na	ame	My Role	State	Keep	Alive	UpTime
2.2.2.2	:	xel	i	Active	OPERATION	AL 30	00:	02:15
1.1.1.1	:	xel	i	Active	OPERATION	AL 30	00:	02:15
R3#show ldp tare	geted-peers							
IP Address	Interf	ace						
1.1.1.1	xel							
PE2#show ldp ses	ssion 1.1.1	.1						
Session state		:	OPERA	TIONAL				
Session role		:	Activ	e				
TCP Connection		:	Estab	lished				
IP Address for 7	ГСР	:	1.1.1	.1				
Interface being	used	:	xe1					
Peer LDP ID		:	1.1.1	.1:0				
Preferred Peer I	LDP Passwor	d:	Not Se	et				
Adjacencies		:	1.1.1	.1				
Advertisement mo	ode	:	Downs	tream Uns	olicited			
Label retention	mode	:	Libera	al				
Graceful Restart	5	:	Not Ca	apable				
Keepalive Timeou	lt	:	30					
Reconnect Interv	zal	:	15					
Configured TCP N	4SS	:	810					
Applied TCP MSS		:	810					
Preferred TCP MS	SS	:	NA					
Address List red	ceived	:	1.1.1	.1				
			10.10	.10.1				
Received Labels	: Fe	С		Label]	Maps To		
			IPV4:	10.10.10.	0/24	25604		none
	IPV4:1.1.1	.1/32		25603	:	none		
	IPV4:20.20	.20.0/	/24	25602	:	none		
	IPV4:3.3.3	.3/32		25601	:	none		

	IPV4:2.2.2/32	25600	none
Sent Labels :	Fec	Label	Maps To
	IPV4:20.20.20.0/24	25604	none
	IPV4:3.3.3/32	25603	none
	IPV4:10.10.10.0/24	25602	impl-null
	IPV4:2.2.2/32	25601	impl-null
	IPV4:1.1.1.1/32	25600	25600

New CLI Command

neighbor tcp-mss

Use this command to set the TCP MSS for an LDP session. MSS is a TCP parameter that defines the maximum amount of data in a TCP segment that can be transmitted.

Use the no command to remove the TCP MSS from an LDP session.

Command Syntax

neighbor (A.B.C.D| auto-targeted | all) tcp-mss <560-1440>
no neighbor (A.B.C.D | auto-targeted | all) tcp-mss

Parameters

A.B.C.D	To set MSS for the specific peer.
auto-targeted	To set MSS for auto-targeted LDP peer. Auto-targeted LDP sessions automatically establish the TCP connection with neighboring routers and do not require the manual configuration of each peer.
all	To set MSS for all LDP peers
<560-1440>	Configure the TCP MSS between this range.

Default

By default, neighbor tcp-mss is disabled and the MSS value is 1460 bytes.

Command Mode

Router LDP mode.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

```
OcNOS(config)#router ldp
OcNOS(config-router)#neighbor 2.2.2.2 tcp-mss 900
OcNOS(config-router)#neighbor all tcp-mss 1000
OcNOS(config-router)#neighbor auto-targeted tcp-mss 800
OcNOS(config-router)#commit
```
Abbreviations

The following are some key abbreviations and their meanings relevant to this document:

Acronym	Description
ACK	Acknowledgment
IGP	Interior Gateway Protocol
LDP	Label Distribution Protocol
MSS	Maximum Segment Size
MTU	Maximum Transmission Unit
OSPF	Open Short Path First
SYN	Synchronize
ТСР	Transmission Control Protocol

Glossary

The following provides definitions for key terms used throughout this document:

LDP	LDP is a routing protocol that manages and distributes the labels to the route in a Multiprotocol Label Switching (MPLS) network. Adding a label to a route helps to control the flow of network traffic and increases the forwarding speed, ensuring a smooth and optimized data transmission.
LDP session	LDP session is the connection established between LDP routers in an MPLS network.
MSS	MSS is a TCP parameter that defines the maximum amount of data in a TCP segment that can be transmitted.
ТСР	TCP is one of the main protocols in the Internet Protocol (IP) suite. It offers a secure and reliable connection between two devices.
TCP segment	TCP segment is a unit of data transmitted in a TCP connection. The segment consists of header and payload. The header contains the control information to manage the transmission, and the payload contains the actual data that needs to be transmitted.

Fall Back Option for RADIUS Authentication

Overview

Currently, the Remote Authentication Dial-In User Service (RADIUS) server authentication fallback to the local authentication server only when the RADIUS server is not reachable.

This behavior is modified in the current release to forward the authentication request to the local authentication server when the RADIUS authentication is failed or not reachable.

Feature Characteristics

The RADIUS authentication mechanism is enhanced to fallback to local authentication server when the user

- is not present on RADIUS server or
- authentication fails from RADIUS server

To implement the above requirements, the existing CLI aaa authentication login default fallback error local non-existent-user vrf management is used to enable fallback to local authentication server. This is disabled by default.

Note: For invalid secret key there is no fallback local authentication. Console authentication is not supported for RADIUS.

Benefits

By default, the fallback to local authentication is applied when the RADIUS server is unreachable. For other scenarios, enable the fallback using the CLI.

Configuration

Below is the existing CLI used to enable the fallback local authentication server.

```
aaa authentication login default fallback error local non-existent-user vrf
management
```

Refer to *Authentication, Authorization and Accounting* section in the OcNOS System Management Configuration Guide, Release 6.4.1.

Validation

 $Configure \verb"aaa" authentication" console and verify console authentication:$

```
OcNOS#con t
Enter configuration commands, one per line. End with CNTL/Z.
OcNOS(config)#radius-server login host 1.1.1.2 seq-num 1 key 0 kumar
OcNOS(config)#commit
OcNOS(config)#aaa authentication login console group radius
OcNOS(config)#commit
OcNOS(config)#commit
```

OcNOS#exit

```
OcNOS#show users
Current user : (*). Lock acquired by user : (#).
CLI user : [C]. Netconf users : [N].
Location : Applicable to CLI users.
Session : Applicable to NETCONF users.
Line User Idle Location/Session PID TYPE Role
```

(*) 0 con 0 [C]ocnos 0d00h00m ttyS0 5531 Remote network-admin

Enabled RADIUS local fallback and verify the authentication:

```
OcNOS (config) #aaa authentication login console group radius local
OcNOS (config) #commit
OcNOS (config) #exit
OcNOS#exit
OcNOS>exit
OcNOS>enable
OcNOS#show users
Current user
                     : (*). Lock acquired by user : (#).
CLI user
                     : [C]. Netconf users
                                                 : [N].
Location : Applicable to CLI users.
Session : Applicable to NETCONF users.
Line
            User
                         Idle
                                      Location/Session PID TYPE
                                                                   Role
(*) 0 con 0 [C]test
                          OdOOhOOm
                                      ttyS0
                                                5713 Local network-engineer
                           0d00h01m
                                       pts/0
                                                      5688 Local network-engineer
130 vty 0
            [C]test
OcNOS#
```

CLI Commands

aaa authentication login default fallback error

Use this command to enable fallback to local authentication for the default login if remote authentication is configured and all AAA servers are unreachable.

Use the no form of this command to disable fallback to local authentication.

Note: If you have specified local (use local authentication) in the *aaa authentication login default* command, you do not need to use this command to ensure that "fall back to local" occurs.

Command Syntax

```
aaa authentication login default fallback error local (vrf management|)
no aaa authentication login default fallback error local (vrf management|)
```

Parameters

management Management VRF

Default

By default, AAA authentication is local.

Command Mode

Configure mode

Applicability

This command was introduced before OcNOS version 1.3.

Examples

```
#configure terminal
(config)#aaa authentication login default fallback error local vrf management
```

aaa authentication login default

Use this command to set the AAA authentication methods.

Use the no form of this command to set the default AAA authentication method (local).

Command Syntax

Parameters

group		Use a server group list for authentication
LIN	ΊE	A space-separated list of up to 8 configured RADIUS or TACACS+, server group names followed by local or none or both local and none. The list can also include:
	radius	All configured RADIUS servers
	tacacs+	All configured TACACS+ servers
local		Use local authentication
none		No authentication
manage	ement	Management VRF

Default

By default, AAA authentication method is local

By default, groups: RADIUS or TACACS+

Command Mode

Configure mode

Applicability

This command was introduced before OcNOS version 1.3.

Examples

```
#configure terminal
(config)#aaa authentication login default vrf management group radius
```

Abbreviations

Acronym	Expantion
AAA	accounting, authentication, authorization
RADIUS	Remote Authentication Dial-In User Service

Modified Extended ACL Deny Rule Behavior in VTY

Overview

The Access Control List refers to rules that allow or deny management protocols to control the network traffic, thus reducing network attacks from external sources.

Users can create Standard and Extended ACL rules and attach them to a virtual teletype (VTY) command line interface. These ACL rules are applied on both Management and Default virtual routing and forwarding (VRFs).

In the case of Standard ACLs, the permit/deny rules are applied only for management protocols such as Telnet/SSH/ SSH-Netconf protocols (port numbers 22,23,830)).

Extended ACL rules are applied as configured by the user, and it is not limited to management protocols only, unlike Standard ACLs.

When a user configures a rule with 'deny any any any' and attaches it to the VTY, it effectively blocks only the Telnet, SSH, and NetConf protocols on the control plane

For example, when a user configures a rule as below and attach them to VTY, If the deny ACL rule includes 'any' value in protocol, only Telnet/SSH/SSH-NetConf protocols are denied.

```
ip access-list ssh-access
10 permit tcp 10.12.43.0/24 any eq ssh
20 deny any any any
```

Note: To deny any protocols other than Telnet/SSH/SSH-Netconf, create a deny rule with the specific protocol access on VTY. For example: To deny OSPF protocol from all the source and destination address, apply the rule, 10 deny ospf any any.

Feature Characteristics

In general, the VTY ACLs are more specific to management protocols. Hence, the Extended ACL "Any" rule translation is enhanced to allow management protocols as follows:

- If the deny ACL rule includes any value in protocol, only Telnet/SSH/SSH-Netconf protocols are denied.
- The permit ACL rule is unchanged.

Benefits

This feature allows the customer to define a Extended ACL deny rule only to the management protocol without impacting other control protocols.

Configure a separate Extended ACL deny rule to deny protocols other than Telnet, SSH, and NetConf.

Configuration

Refer to Access Control Lists Configurations section in the System Management Configuration guide, Release 6.4.2.

Implementation Examples

```
OcNOS#show running-config aclmgr
ip access-list ssh-access
 10 permit tcp 10.12.43.0/24 any eq ssh
 20 deny tcp 10.12.33.0/24 any eq 6513
 30 deny any 10.12.34.0/24 any
 40 deny any any any
!
line vty
ip access-group ssh-access in
#####iptables o/p######
root@OcNOS:~# iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source
                                        destination
ACCEPT
         tcp -- 10.12.43.0/24
                                        anywhere
                                                            tcp dpt:ssh
DROP
         tcp -- 10.12.33.0/24
                                        anywhere
                                                            tcp dpt:tls netconf
DROP
         tcp -- 10.12.34.0/24
                                       anywhere
                                                            multiport dports
ssh,telnet,ssh netconf
DROP tcp -- anywhere
                                        anywhere
                                                            multiport dports
ssh,telnet,ssh netconf
```

CLI Commands

Refer to Access Control List Commands (Standard) section of the System Management Configuration guide.

Abbreviations

Acronym	Expantion
ACL	Access control list
VRF	Virtual Routing Forwarding
VTY	Virtual teletype

Improved Network Resilience

This section, describes the failover and error handling enhancements introduced in the Release 6.4.1.

- RSVP Detour Over Ring Topology
- Commit Rollback

RSVP Detour Over Ring Topology

Overview

In OcNOS, this feature allows the detour formation in the ring topology to enhance the routing experience. The detour formation is a local protection mechanism to reroute the data traffic when a failure or congestion occurs in the primary Label Switched Path (LSP). In Multiprotocol Label Switching (MPLS), the primary LSP is the default path through which the data travels from the source to the destination node.

Feature Characteristics

This feature allows detour to take the upstream path of protected LSP, allowing a detour based protection in a ring topology. The upstream path of the protected LSP is the section of the network that precedes the PLR node in the network. This feature works for both path and sender-template method of detour formation. For the inter-op solutions that do not support the sender-template method, use the path method of detour formation.

In the below diagram, the data traffic path highlighted in green dots is the primary LSP. The link shown with the red cross is locally protected at the Point of Local Repair (PLR) node. A PLR node is a network device that reacts and takes action when a link fails. For continued data traffic flow, detour occurs through the red dotted line. Detour in MPLS is an alternate path used when the primary LSP encounters disruption or congestion.

RSVP-TE FRR failover ring topology Feature Characteristics

Benefits

This feature helps detour the data traffic when there is a link or node failure, keeping the data traffic loss to a minimum (less than 50ms when BFD negotiated for fastest detection).

Prerequisite

Before the detour configuration in a ring topology, configure the RSVP tunnel with fast reroute protection of the one-toone method.

For more information, refer to the Fast Reroute Configuration (one-to-one method) section of the RSVP Detour Over Ring Topology chapter in the OcNOS Multi-Protocol Label Switching Guide, Release 6.4.1.

Configuration

This section shows the configuration procedure to create a detour in the ring topology.

Topology

Configure the primary LSP in the below ring topology from the head end to the tail end.

For example, consider PE1 as the head end and PE2 as the tail end, and the primary LSP is via R1, R2, and R3. In this case, first configure the *Fast Reroute Configuration (one-to-one method)* on the PE1 and PE2 and then configure the detour-allow-primary-upstream-path command in all the nodes. For example, if the link between R3 and PE2 is down, the detour follows via primary LSP to reach PE2.

RSVP-TE FRR failover ring topology - 1:1 Detour

Configuration

PE1 - OSPF Configurations

This section shows how to configure the Open Shortest Path First (OSPF) as Interior Gateway Protocol (IGP).

PE1#configure terminal	Enter configure mode.
PE1(config)#interface xe3	Enter interface mode xe3.
PE1(config-if)#ip address 61.61.61.3/24	Configure IPv4 address 61.61.61.3.24.
PE1(config-if)#label-switching	Configure label switching on xe3.
PE1(config-if)#enable-rsvp	Enable RSVP on xe3.
PE1(config-if) #exit	Exit interface mode.
PE1(config)#interface xe12	Enter interface mode xe12.
PE1(config-if)#ip address 58.58.58.2/24	Configure IPv4 address 58.58.58.2/24.
PE1(config-if)#label-switching	Configure label switching on xe12.
PE1(config-if)#enable-rsvp	Enable RSVP on xe12.

PE1(config-if)#exit	Exit interface mode.
PE1(config)#interface lo	Enter loopback interface mode.
PE1(config-if)#ip address 26.26.26.26/32 secondary	Configure IPv4 address 26.26.26.26/32.
PE1(config-if)#exit	Exit interface mode.
PE1(config) #router ospf 100	Enter OSPF router mode.
PE1(config-router)#ospf router-id 26.26.26.26	Assign router ID 26.26.26.26 for OSPF.
PE1(config-router)#network 26.26.26.26/32 area 0.0.0	Define network 26.26.26.26/32 under router OSPF.
PE1(config-router)#network 58.58.58.0/24 area 0.0.0.0	Define network 58.58.58.0/24 under router OSPF.
PE1(config-router)#network 61.61.61.0/24 area 0.0.0.0	Define network 61.61.61.0/24 under router OSPF.
PE1(config-router)#exit	Exit router OSPF mode.
PE1(config)#commit	Commit the transaction.
PE1(config) #exit	Exit the configure mode.

PE1 - RSVP Configurations

The below section shows:

- 1. The configuration of detour to take the upstream path of protected LSP.
- 2. The configuration of the primary LSP and attaching it to the RSVP trunk.
- 3. The configuration of the FRR.

PE1#configure terminal	Enter configure mode.
PE1(config)#router rsvp	Enable RSVP globally.
PE1(config-router)#detour-allow-primary- upstream-path	Configure this CLI to allow detour to take primary upstream path.
PE1(config-router)#exit	Exit router RSVP mode.
PE1(config)#rsvp-path PE1-PE2-01 mpls	Configure RSVP path PE1-PE2-01 and enter path mode.
PE1(config-path)#61.61.61.2 strict	Configure this explicit route path as a strict hop.
PE1(config-path)#23.23.23.3 strict	Configure this explicit route path as a strict hop.
PE1(config-path)#41.41.41.3 strict	Configure this explicit route path as a strict hop.
PE1(config-path)#56.56.56.3 strict	Configure this explicit route path as a strict hop.
PE1(config-path)#rsvp-trunk TR-PE1-PE2-MP- 01 ipv4	Create an RSVP trunk TR-PE1-PE2-MP-01 and enter the trunk mode.
PE1(config-trunk)#primary fast-reroute protection one-to-one	Configure primary fast reroute protection.
PE1(config-trunk) #primary fast-reroute node- protection	Configure node protection.
PE1(config-trunk) #primary path PE1-PE2-01	Configure trunk PE1-PE2-01 to use as the primary LSP.
PE1(config-trunk)#from 26.26.26.26	Assign the source loopback address 26.26.26.26 to the RSVP trunk.

PE1(config-trunk)#to 22.22.22.22	Assign the destination loopback address 22.22.22.22 to the RSVP trunk.
PE1(config-trunk)#exit	Exit router RSVP trunk mode.
PE1(config)#commit	Commit the transaction.
PE1(config)#exit	Exit the configure mode.

R1 - OSPF Configurations

The below section shows how to configure the Open Shortest Path First (OSPF) as Interior Gateway Protocol (IGP).

R1#configure terminal	Enter configure mode.
R1(config)#interface xe3	Enter interface mode xe3.
R1(config-if)#ip address 61.61.61.2/24	Configure IPv4 address 61.61.61.2/24.
R1(config-if)#label-switching	Configure label switching on xe3.
R1(config-if)#enable-rsvp	Enable RSVP on interface xe3.
R1(config-if)#exit	Exit interface mode.
R1(config)#interface xe47	Enter interface mode xe47.
R1(config-if)#ip address 23.23.23.2/24	Configure IPv4 address 23.23.23.2/24.
R1(config-if)#label-switching	Configure label switching on xe47.
R1(config-if)#enable-rsvp	Enable RSVP on interface xe47.
R1(config-if)#exit	Exit interface mode.
R1(config)#interface lo	Enter loopback interface mode.
R1(config-if)#ip address 24.24.24.24/32 secondary	Configure IPv4 address 24.24.24.24/32.
R1(config-if)#exit	Exit interface mode.
R1(config)#router ospf 100	Enter OSPF router mode.
R1(config-router)#ospf router-id 24.24.24.24	Assign router-id for OSPF.
R1(config-router)#network 23.23.23.0/24 area 0.0.0.0	Define network 23.23.23.0/24 under router OSPF.
R1(config-router)#network 24.24.24.24/32 area 0.0.0.0	Define network 24.24.24.24/32 under router OSPF.
R1(config-router)#network 61.61.61.0/24 area 0.0.0	Define network 61.61.61.0/24 under router OSPF.
R1(config-router)#exit	Exit router OSPF mode.
R1(config)#commit	Commit the transaction.
R1(config)#exit	Exit the configure mode.

R1 - RSVP Configurations

The below section shows how to configure the detour to take the upstream path of protected LSP.

R1#configure terminal	Enter configure mode.
R1(config)#router rsvp	Enable RSVP globally.
R1(config-router)#detour-allow-primary- upstream-path	Configure this CLI to allow detour to take primary upstream path.

R1(config-router)#exit	Exit router RSVP mode.
R1(config)#commit	Commit the transaction.
R1(config)#exit	Exit the configure mode.

R2 - OSPF Configurations

This section shows how to configure the Open Shortest Path First (OSPF) as Interior Gateway Protocol (IGP).

R2#configure terminal	Enter configure mode.
R2(config)#interface xel	Enter interface mode xe1.
R2(config-if)#ip address 41.41.41.2/24	Configure IPv4 address 41.41.41.2/24.
R2(config-if)#label-switching	Configure label switching on xe1.
R2(config-if)#enable-rsvp	Enable RSVP on xe1.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface xe47	Enter interface mode $x e 47$.
R2(config-if)#ip address 23.23.23.3/24	Configure IPv4 address 23.23.23.3/24.
R2(config-if)#label-switching	Configure label switching on xe47.
R2(config-if)#enable-rsvp	Enable RSVP on xe47.
R2(config-if)#exit	Exit interface mode.
R2(config)#interface lo	Enter loopback interface mode.
R2(config-if)#ip address 88.88.88.88/32 secondary	Configure IPv4 address 88.88.88.88/32.
R2(config-if)#exit	Exit interface mode.
R2(config)#router ospf 100	Enter OSPF router mode.
R2(config-router)#ospf router-id 88.88.88.88	Assign router-id 88.88.88.88 for OSPF.
R2(config-router)#network 23.23.23.0/24 area 0.0.0.0	Define network 23.23.23.0/24 under router OSPF.
R2(config-router)#network 41.41.41.0/24 area 0.0.0.0	Define network 41.41.41.0/24 under router OSPF.
R2(config-router)#network 88.88.88.88/32 area 0.0.0.0	Define network 88.88.88.88/32 under router OSPF.
R2(config-router)#exit	Exit router OSPF mode.
R2(config)#commit	Commit the transaction.
R2(config)#exit	Exit the configure mode.

R2 - RSVP Configurations

This section shows how to configure the detour to take the upstream path of protected LSP.

R2#configure terminal	Enter configure mode.
R2(config)#router rsvp	Enable RSVP globally.
R2(config-router)#detour-allow-primary- upstream-path	Configure this CLI to allow detour to take primary upstream path.
R2(config-router)#exit	Exit router RSVP mode.

R2(config)#commit	Commit the transaction.
R2(config)#exit	Exit the configure mode.

R3 - OSPF Configurations

This section shows how to configure the Open Shortest Path First (OSPF) as Interior Gateway Protocol (IGP).

R3#configure terminal	Enter configure mode.
R3(config)#interface xel	Enter interface mode xe1.
R3(config-if)#ip address 41.41.41.3/24	Configure IPv4 address 41.41.41.3/24.
R3(config-if)#label-switching	Configure label switching on xe1.
R3(config-if)#enable-rsvp	Enable RSVP on xe1.
R3(config-if)#exit	Exit interface mode.
R3(config)#interface xe5	Enter interface mode xe5.
R3(config-if)#ip address 56.56.56.2/24	Configure IPv4 address 56.56.56.2/24.
R3(config-if)#label-switching	Configure label switching on xe5.
R3(config-if)#enable-rsvp	Enable RSVP on xe5.
R3(config-if)#exit	Exit interface mode.
R3(config)#interface lo	Enter loopback interface mode.
R3(config-if)#ip address 99.99.99.99/32 secondary	Configure IPv4 address 99.99.99.99/32.
R3(config-if)#exit	Exit interface mode.
R3(config)#router ospf 100	Enter OSPF router mode.
R3(config-router)#ospf router-id 99.99.99.99	Assign router-id for OSPF.
R3(config-router)#network 41.41.41.0/24 area 0.0.0.0	Define network 41.41.41.0/24 under router OSPF.
R3(config-router)#network 56.56.56.0/24 area 0.0.0	Define network 56.56.56.0/24 under router OSPF.
R3(config-router)#network 99.99.99.99/32 area 0.0.0.0	Define network 99.99.99.99/32 under router OSPF.
R3(config-router)#exit	Exit router OSPF mode.
R3(config)#commit	Commit the transaction.
R3(config)#exit	Exit the configure mode.

R3 - RSVP Configurations

This section shows how to configure the detour to take the upstream path of protected LSP.

R3#configure terminal	Enter configure mode.
R3(config)#router rsvp	Enable RSVP globally.
R3(config-router)#detour-allow-primary- upstream-path	Configure this CLI to allow detour to take primary upstream path.
R3(config-router)#exit	Exit router RSVP mode.
R3(config)#commit	Commit the transaction.
R3(config)#exit	Exit the configure mode.

R5 - OSPF Configurations

This section shows how to configure the Open Shortest Path First (OSPF) as Interior Gateway Protocol (IGP).

R5#configure terminal	Enter configure mode.
R5(config)#interface xel	Enter interface mode 58.58.58.3/24.
R5(config-if)#ip address 58.58.3/24	Configure IPv4 address.
R5(config-if)#label-switching	Configure label switching on xe1.
R5(config-if)#enable-rsvp	Enable RSVP on xe1.
R5(config-if)#exit	Exit interface mode.
R5(config)#interface xel3	Enter interface mode xe13.
R5(config-if)#ip address 54.54.54.4/24	Configure IPv4 address 54.54.54.4/24.
R5(config-if)#label-switching	Configure label switching on xe13.
R5(config-if)#enable-rsvp	Enable RSVP on xe13.
R5(config-if)#exit	Exit interface mode.
R5(config)#interface lo	Enter loopback interface mode.
R5(config-if)#ip address 17.17.17.17/32 secondary	Configure IPv4 address 17.17.17.17/32.
R5(config-if)#exit	Exit interface mode.
R5(config)#router ospf 100	Enter OSPF router mode.
R5(config-router)#ospf router-id 17.17.17.17	Assign router-id for OSPF.
R5(config-router)#network 17.17.17.17/32 area 0.0.0.0	Define network 17.17.17.17/32 under router OSPF.
R5(config-router)#network 54.54.54.0/24 area 0.0.0	Define network 54.54.54.0/24 under router OSPF.
R5(config-router)#network 58.58.58.0/24 area 0.0.0	Define network 58.58.58.0/24 under router OSPF.
R5(config-router)#exit	Exit router OSPF mode.
R5(config)#commit	Commit the transaction.
R5(config)#exit	Exit the configure mode.

R5 - RSVP Configurations

This section shows how to configure the detour to take the upstream path of protected LSP.

R5#configure terminal	Enter configure mode.
R5(config)#router rsvp	Enable RSVP globally.
R5(config-router)#detour-allow-primary- upstream-path	Configure this CLI to allow detour to take primary upstream path
R5(config-router)#exit	Exit router RSVP mode
R5(config)#commit	Commit the transaction.
R5(config)#exit	Exit the configure mode.

R4 - OSPF Configurations

This section shows how to configure the Open Shortest Path First (OSPF) as Interior Gateway Protocol (IGP).

R4#configure terminal	Enter configure mode.
R4(config)#interface xel3	Enter interface mode xe13.
R4(config-if)#ip address 54.54.54.3/24	Configure IPv4 address 54.54.54.3/24.
R4(config-if)#label-switching	Configure label switching on xe13.
R4(config-if)#enable-rsvp	Enable RSVP on interface xe13.
R4(config-if)#exit	Exit interface mode.
R4(config)#interface xe8	Enter interface mode xe8.
R4(config-if)#ip address 62.62.62.3/24	Configure IPv4 address 62.62.62.3/24.
R4(config-if)#label-switching	Configure label switching on xe8.
R4(config-if)#enable-rsvp	Enable RSVP on xe8.
R4(config-if)#exit	Exit interface mode.
R4(config)#interface lo	Enter loopback interface mode.
R4(config-if)#ip address 48.48.48.48/32 secondary	Configure IPv4 address 48.48.48.48.48/32.
R4(config-if)#exit	Exit interface mode.
R4(config)#router ospf 100	Enter OSPF router mode.
R4(config-router)#ospf router-id 48.48.48.48	Assign router-id for OSPF.
R4(config-router)#network 48.48.48.48/32 area 0.0.0.0	Define network 48.48.48.48/32 under router OSPF.
R4(config-router)#network 54.54.54.0/24 area 0.0.0	Define network 54.54.54.0/24 under router OSPF.
R4(config-router)#network 62.62.62.0/24 area 0.0.0	Define network 62.62.62.0/24 under router OSPF.
R4(config-router)#exit	Exit router OSPF mode.
R4(config)#commit	Commit the transaction.
R4(config)#exit	Exit the configure mode.

R4 - RSVP Configurations

This section shows how to configure the detour to take the upstream path of protected LSP.

R4#configure terminal	Enter configure mode.
R4(config)#router rsvp	Enable RSVP globally.
R4(config-router)#detour-allow-primary- upstream-path	Configure this CLI to allow detour to take primary upstream path.
R4(config-router)#exit	Exit router RSVP mode.
R4(config)#commit	Commit the transaction.
R4(config)#exit	Exit the configure mode.

PE2 - OSPF Configurations

This section shows how to configure the Open Shortest Path First (OSPF) as Interior Gateway Protocol (IGP).

PE2#configure terminal	Enter configure mode.
PE2(config)#interface xe5	Enter interface mode xe5.
PE2(config-if)#ip address 56.56.56.3/24	Configure IPv4 address 56.56.56.3/24.
PE2(config-if)#label-switching	Configure label switching on xe5.
PE2(config-if)#enable-rsvp	Enable RSVP on xe5.
PE2(config-if)#exit	Exit interface mode.
PE2(config)#interface ge8	Enter interface mode ge8.
PE2(config-if)#ip address 62.62.62.2/24	Configure IPv4 address 62.62.62.2/24.
PE2(config-if)#label-switching	Configure label switching on ge8.
PE2(config-if)#enable-rsvp	Enable RSVP on ge8.
PE2(config-if)#exit	Exit interface mode.
PE2(config)#interface lo	Enter loopback interface mode.
PE2(config-if)#ip address 22.22.22.22/32 secondary	Configure IPv4 address 22.22.22.22/32.
PE2(config-if)#exit	Exit interface mode.
PE2(config)#router ospf 100	Enter OSPF router mode.
PE2(config-router)#ospf router-id 22.22.22.22	Assign router-id for OSPF.
PE2(config-router)#network 22.22.22.22/32 area 0.0.0.0	Define network 22.22.22.22/32 under router OSPF.
PE2(config-router)#network 56.56.56.0/24 area 0.0.0.0	Define network 56.56.56.0/24 under router OSPF.
PE2(config-router)#network 62.62.62.0/24 area 0.0.0.0	Define network 62.62.62.0/24 under router OSPF.
PE2(config-router)#exit	Exit router OSPF mode.
PE2(config)#commit	Commit the transaction.
PE2(config)#exit	Exit the configure mode.

PE2 - RSVP Configurations

This section shows:

- 1. The configuration of detour to take the upstream path of protected LSP.
- 2. The configuration of the primary LSP and attaching it to the RSVP trunk.
- 3. The configuration of the FRR.

PE2#configure terminal	Enter configure mode.
PE2(config)#router rsvp	Enable RSVP globally.
PE2(config-router)#detour-allow-primary- upstream-path	Configure this CLI to allow detour to take primary upstream path.
PE2(config-router)#exit	Exit router RSVP mode.
PE2(config)#rsvp-path PE2-PE1-01 mpls	Configure RSVP path PE2-PE1-01 and enter path mode.
PE2(config-path)#56.56.56.2 strict	Configure this explicit route path as a strict hop.
PE2(config-path)#41.41.41.2 strict	Configure this explicit route path as a strict hop.

PE2(config-path)#23.23.23.2 strict	Configure this explicit route path as a strict hop.
PE2(config-path)#61.61.61.3 strict	Configure this explicit route path as a strict hop.
PE2(config-router)#exit	Exit path mode.
PE2(config-path)#rsvp-trunk TR-PE2-PE1-MP- 01 ipv4	Create an RSVP trunk TR-PE2-PE1-MP-01 and enter the Trunk mode.
PE2(config-trunk)#primary fast-reroute protection one-to-one	Configure primary fast-reroute protection.
PE2(config-trunk) #primary fast-reroute node- protection	Configure node protection.
PE2(config-trunk)#primary path PE2-PE1-01	Configure trunk PE2-PE1-01 to use as the primary LSP.
PE2(config-trunk)#from 22.22.22.22	Assign the source loopback address 22.22.22.22 to the RSVP trunk.
PE2(config-trunk)#to 26.26.26.26	Assign the destination loopback address 26.26.26.26 to the RSVP trunk.
PE2(config-trunk)#exit	Exit router RSVP trunk mode.
PE2(config)#commit	Commit the transaction.
PE2(config)#exit	Exit the configure mode.

Validation

PE1

Below is the validation output of RSVP LSPs from PE1 to PE2 via R1>R2>R3:

```
#show rsvp session
Type : PRI - Primary, SEC - Secondary, DTR - Detour, BPS - Bypass
State : UP - Up, DN - Down, BU - Backup in Use, SU - Secondary in Use, FS - Forced to Secondary
* indicates the session is active with local repair at one or more nodes
(P) indicates the secondary-priority session is acting as primary
```

Ingress RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 52480	26.26.26.26	5001	2205	PRI	TR-PE1-PE2-MP-01-Primary	UP	02:12:32	1 1	SE	-
22.22.22.22 25600	58.58.58.2	5001	2205	DTR	TR-PE1-PE2-MP-01-Detour	UP	00:34:04	1 2	SE	-
Total 2 display	ed, Up 2, Down 0									
Transit RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 25600	61.61.61.2	5001	2205	PRI	TR-PE1-PE2-MP-01-Detour	UP	00:33:19	1 2	SE	25602
Total 1 display	ed, Up 1, Down 0									
Egress RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
26.26.26.26	22.22.22.22	5001	2205	PRI	TR-PE2-PE1-MP-01-Primary	UP	02:12:27	1 1	SE	25601 .
26.26.26.26	62.62.62.2	5001	2205	PRI	TR-PE2-PE1-MP-01-Detour	UP	02:09:08	1 1	SE	25600 .
Total 2 display	ed, Up 2, Down 0									

Below is the validation output of RSVP ping and trace from PE1 to PE2:

#ping mpls rsvp egress 22.22.22.22 detail Sending 5 MPLS Echos to 22.22.22, timeout is 5 seconds

Codes:

'!' - Success, 'Q' - request not sent, '.' - timeout, 'x' - Retcode 0, 'M' - Malformed Request, 'm' - Errored TLV, 'N' - LBL Mapping Err, 'D' - DS Mismatch,

```
'U' - Unknown Interface, 'R' - Transit (LBL Switched),
'B' - IP Forwarded, 'F' No FEC Found, 'f' - FEC Mismatch,
'P' - Protocol Error, 'X' - Unknown code,
'Z' - Reverse FEC Validation Failed
Type 'Ctrl+C' to abort
! seq num = 1 56.56.56.3 0.91 ms
! seq_num = 2 56.56.56.3 0.54 ms
! seq num = 3 56.56.56.3 0.48 ms
! seq_num = 4 56.56.56.3 0.47 ms
! seq_num = 5 56.56.56.3 0.50 ms
Success Rate is 100.00 percent (5/5)
round-trip min/avg/max = 0.47/0.69/0.91
PE1#
#trace mpls rsvp egress 22.22.22.22 detail
Tracing MPLS Label Switched Path to 22.22.22.22, timeout is 5 seconds
Codes:
'!' - Success, 'Q' - request not sent, '.' - timeout,
'x' - Retcode 0, 'M' - Malformed Request, 'm' - Errored TLV,
'N' - LBL Mapping Err, 'D' - DS Mismatch,
'U' - Unknown Interface, 'R' - Transit (LBL Switched),
'B' - IP Forwarded, 'F' No FEC Found, 'f' - FEC Mismatch,
'P' - Protocol Error, 'X' - Unknown code,
'Z' - Reverse FEC Validation Failed
 Type 'Ctrl+C' to abort
 0 61.61.61.3 [Labels: 52480]
```

C 01.01.01.3 [Labels: 52480] R 1 61.61.61.2 [Labels: 25600] 0.71 ms R 2 23.23.23.3 [Labels: 25600] 0.83 ms R 3 41.41.41.3 [Labels: 25600] 0.88 ms ! 4 56.56.56.3 0.69 ms

Below are the outputs from transit nodes R1, R2 and R3 for primary LSP configured:

R1

#show rsvp session
Type : PRI - Primary, SEC - Secondary, DTR - Detour, BPS - Bypass
State : UP - Up, DN - Down, BU - Backup in Use, SU - Secondary in Use, FS - Forced to Secondary
* indicates the session is active with local repair at one or more nodes
(P) indicates the secondary-priority session is acting as primary

Ingress RSVP:

To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 25602	61.61.61.2	5001	2205	DTR	TR-PE1-PE2-MP-01-Detour	UP	00:38:43	1 2	SE	-
26.26.26.26 25603	23.23.23.2	5001	2205	DTR	TR-PE2-PE1-MP-01-Detour	UP	00:38:44	1 1	SE	-
Total 2 displaye	ed, Up 2, Down 0.									

Transit RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 25600	26.26.26.26	5001	2205	PRI	TR-PE1-PE2-MP-01-Primary	UP	02:17:55	1 1	SE	52480
22.22.22.22 25602	23.23.23.3	5001	2205	PRI	TR-PE1-PE2-MP-01-Detour	UP	00:37:58	1 2	SE	52482
26.26.26.26 25601	22.22.22.22	5001	2205	PRI	TR-PE2-PE1-MP-01-Primary	UP	02:17:50	1 1	SE	52481
Total 3 display	ed, Up 3, Down 0									

R2

#show rsvp session
Type : PRI - Primary, SEC - Secondary, DTR - Detour, BPS - Bypass
State : UP - Up, DN - Down, BU - Backup in Use, SU - Secondary in Use, FS - Forced to Secondary
* indicates the session is active with local repair at one or more nodes
(P) indicates the secondary-priority session is acting as primary

Ingress RSVP:

RSVP Detour Over Ring Topology

То	From	Tun-TD	LSP-TD	Type	LSPName	State	Untime	R+	Style	Labelin
Labelout	1101	Iun ID	101 10	TYPC	Lorivence	beace	operme	100	DUYIC	Baberin
22.22.22.22 52482	23.23.23.3	5001	2205	DTR	TR-PE1-PE2-MP-01-Detour	UP	00:38:07	1 2	SE	-
26.26.26.26 25602	41.41.41.2	5001	2205	DTR	TR-PE2-PE1-MP-01-Detour	UP	00:39:00	1 2	SE	-
Total 2 displaye	ed, Up 2, Down 0	•								
Transit RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 25600	26.26.26.26	5001	2205	PRI	TR-PE1-PE2-MP-01-Primary	UP	02:18:05	1 1	SE	25600
22.22.22.22 52482	41.41.41.3	5001	2205	PRI	TR-PE1-PE2-MP-01-Detour	UP	00:37:28	1 2	SE	25602
26.26.26.26 52481	22.22.22.22	5001	2205	PRI	TR-PE2-PE1-MP-01-Primary	UP	02:18:00	1 1	SE	25601
26.26.26.26 25602	23.23.23.2	5001	2205	PRI	TR-PE2-PE1-MP-01-Detour	UP	00:38:53	1 2	SE	25603
Total 4 displaye	ed, Up 4, Down 0									

R3

#show rsvp session

Type : PRI - Primary, SEC - Secondary, DTR - Detour, BPS - Bypass State : UP - Up, DN - Down, BU - Backup in Use, SU - Secondary in Use, FS - Forced to Secondary * indicates the session is active with local repair at one or more nodes (P) indicates the secondary-priority session is acting as primary

Ingress RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 25602	41.41.41.3	5001	2205	DTR	TR-PE1-PE2-MP-01-Detour	UP	00:37:31	1 1	SE	-
26.26.26.26 25602	56.56.56.2	5001	2205	DTR	TR-PE2-PE1-MP-01-Detour	UP	00:39:23	1 2	SE	-
Total 2 displa	yed, Up 2, Down	0.								
Transit RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 25600	26.26.26.26	5001	2205	PRI	TR-PE1-PE2-MP-01-Primary	UP	02:18:08	1 1	SE	25600
26.26.26.26 25601	22.22.22.22	5001	2205	PRI	TR-PE2-PE1-MP-01-Primary	UP	02:18:02	1 1	SE	25601

TR-PE2-PE1-MP-01-Detour

UP

00:39:03 1 2 SE

25602

Total 3 displayed, Up 3, Down 0.

41.41.41.2

Below are the outputs from transit nodes R4 and R5 for Detour LSPs formation:

2205

5001

From R4

26.26.26.26 25602

#show rsvp session
Type : PRI - Primary, SEC - Secondary, DTR - Detour, BPS - Bypass
State : UP - Up, DN - Down, BU - Backup in Use, SU - Secondary in Use, FS - Forced to Secondary
* indicates the session is active with local repair at one or more nodes
(P) indicates the secondary-priority session is acting as primary

PRI

Transit RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22 25601	58.58.58.2	5001	2205	PRI	TR-PE1-PE2-MP-01-Detour	UP	02:14:52	1 1	SE	25600
26.26.26.26 25601	62.62.62.2	5001	2205	PRI	TR-PE2-PE1-MP-01-Detour	UP	00:39:49	1 1	SE	25601
Total 2 displaye	ed, Up 2, Down 0	•								

From R5

#show rsvp session
Type : PRI - Primary, SEC - Secondary, DTR - Detour, BPS - Bypass
State : UP - Up, DN - Down, BU - Backup in Use, SU - Secondary in Use, FS - Forced to Secondary
* indicates the session is active with local repair at one or more nodes
(P) indicates the secondary-priority session is acting as primary

Transit RSVP:

To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22	58.58.58.2	5001	2205	PRI	TR-PE1-PE2-MP-01-Detour	UP	00:39:45	1 1	SE	25600
26.26.26.26 25600	62.62.62.2	5001	2205	PRI	TR-PE2-PE1-MP-01-Detour	UP	02:14:48	1 1	SE	25601

Total 2 displayed, Up 2, Down 0.

Now, shutting down one of the interfaces on Primary LSP path and check RSVP tunnel outputs on PE1 and PE2

Shutdown interface xe47 connected between R1 and R2:

#configure terminal	Enter Configure mode.
(config) #interface xe47	Enter interface mode.
(config-router)#shutdown	Administratively bring the interface down.
(config-router) #exit	Exit router RSVP mode

Below is the validation output of RSVP LSPs from PE1 to PE2 after admin shutting one of the interfaces on primary LSP path:

#show rsvp ses	sion									
Type : PRI -	Primary, SEC - :	Secondary,	DTR - De	tour, B	PS - Bypass					
State · IIP - I	ID DN - DOWD BI	I - Backup	in Use	SII - Se	condary in Use FS - Forced to S	econdar	rv			
*	· · · · · · · · · · · · · · · · · · ·		1			00011441	- 1			
^ indicates tr	le session is ac	cive with	local rep	air at	one of more nodes					
(P) indicates	the secondary-p	riority se	ssion is	acting	as primary					
Ingress RSVP:										
То	From	Tun-ID	LSP-ID	Type	LSPName	State	Uptime	Rt	Style	Labelin
Labelout							-		-	
22.22.22.22	26.26.26.26	5001	2205	PRI	TR-PE1-PE2-MP-01-Primarv	UP*	02:32:40	1 1	SE	-
52480					4					
22.22.22.22	26.26.26.26	5001	2201	PRI	TR-PE1-PE2-MP-01-Primary	DN	N/A	0 0	SE	-
22.22.22.22 25600	58.58.58.2	5001	2205	DTR	TR-PE1-PE2-MP-01-Detour	UP	00:54:12	1 2	SE	-
Total 3 displa	ved, Up 2, Down	1.								
Transit RSVP:										
To	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
Laberout	~ ~ ~ ~ ~ ~	5001	0005				~~ ~~ ~~	1 0		05600
22.22.22.22 25600	61.61.61.2	5001	2205	PRI	TR-PEI-PE2-MP-01-Detour	UΡ	00:53:27	12	SE	25602
Total 1 displa	yed, Up 1, Down	0.								
Delaw is the	undidation autor				a frame DE1 to DE2 after abuilt					
Below is the	validation outpl	LT OT RSV	P ping a	nd trac	e from PET to PEZ after shuttl	ng one	e of the in	terra	ces or	i primary
I SP nath										
Loi pain.										
Egress RSVP:										
To	From	Tun-TD	LSP-TD	Type	LSPName	State	Untime	Rt	Style	Labelin
Labelout			10	-100			5 <u>F</u> 5 <u>F</u> 10	1.0	110	
26 26 26 26	62 62 62 2	5001	2205	PRT	TR-PE2-PE1-MP-01-Detour	UP	02.29.16	1 1	SE	25600

#ping mpls rsvp egress 22.22.22.22 detail Sending 5 MPLS Echos to 22.22.22, timeout is 5 seconds

Codes:

'!' - Success, 'Q' - request not sent, '.' - timeout, 'x' - Retcode 0, 'M' - Malformed Request, 'm' - Errored TLV, 'N' - LBL Mapping Err, 'D' - DS Mismatch, 'U' - Unknown Interface, 'R' - Transit (LBL Switched), 'B' - IP Forwarded, 'F' No FEC Found, 'f' - FEC Mismatch, 'P' - Protocol Error, 'X' - Unknown code, 'Z' - Reverse FEC Validation Failed Type 'Ctrl+C' to abort

! seq_num = 1 62.62.62.2 0.69 ms ! seq_num = 2 62.62.62.2 0.54 ms ! seq_num = 3 62.62.62.2 0.56 ms

Total 1 displayed, Up 1, Down 0.

```
! seg num = 4 62.62.62.2 0.49 ms
! seq_num = 5 62.62.62.2 0.51 ms
Success Rate is 100.00 percent (5/5)
round-trip min/avg/max = 0.49/0.59/0.69
#trace mpls rsvp egress 22.22.22.22 detail
Tracing MPLS Label Switched Path to 22.22.22, timeout is 5 seconds
Codes:
'!' - Success, 'Q' - request not sent, '.' - timeout,
'x' - Retcode 0, 'M' - Malformed Request, 'm' - Errored TLV,
'N' - LBL Mapping Err, 'D' - DS Mismatch,
'U' - Unknown Interface, 'R' - Transit (LBL Switched),
'B' - IP Forwarded, 'F' No FEC Found, 'f' - FEC Mismatch,
'P' - Protocol Error, 'X' - Unknown code,
'Z' - Reverse FEC Validation Failed
 Type 'Ctrl+C' to abort
 0 61.61.61.3 [Labels: 52480]
R 1 61.61.61.2 [Labels: 25602] 0.72 ms
```

R 1 61.61.61.2 [Labels: 25602] 0.72 ms R 2 61.61.61.3 [Labels: 25600] 0.67 ms R 3 58.58.58.3 [Labels: 25600] 0.80 ms R 4 54.54.54.3 [Labels: 25601] 0.80 ms ! 5 62.62.62.2 0.50 ms

Below is the validation output of RSVP LSPs from PE2 to PE1 after admin shutting one of the interfaces on primary LSP path:

#show rsvp ses	sion									
Type : PRI -	Primary, SEC - S	Secondary,	DTR - De	tour, B	PS - Bypass					
State : UP - U	p, DN - Down, BU	J - Backup	in Use,	SU - Se	condary in Use, FS - Forced to S	econda	гy			
* indicates th	e session is act	tive with	local rep	air at	one or more nodes					
(P) indicates	the secondary-pr	riority se	ssion is	acting	as primary					
Ingress RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
26.26.26.26 25601	22.22.22.22	5001	2205	PRI	TR-PE2-PE1-MP-01-Primary	UP*	02:36:19	1 1	SE	-
26.26.26.26	22.22.22.22	5001	2201	PRI	TR-PE2-PE1-MP-01-Primary	DN	N/A	0 0	SE	
26.26.26.26 25601	62.62.62.2	5001	2205	DTR	TR-PE2-PE1-MP-01-Detour	UP	00:57:57	1 2	SE	-
Total 3 displa	yed, Up 2, Down	1.								
Transit RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
26.26.26.26 25601	56.56.56.2	5001	2205	PRI	TR-PE2-PE1-MP-01-Detour	UP	00:57:40	1 2	SE	25602
Total 1 displa	yed, Up 1, Down	0.								
Egress RSVP:										
To Labelout	From	Tun-ID	LSP-ID	Туре	LSPName	State	Uptime	Rt	Style	Labelin
22.22.22.22	58.58.58.2	5001	2205	PRI	TR-PE1-PE2-MP-01-Detour	UP	02:33:00	1 1	SE	25601 -
Total 1 displa	yed, Up 1, Down	0.								
Below is the v LSP path:	validation outpu	ut of RSV	P ping a	nd trac	e from PE2 to PE1 after shutti	ng one	e of the in	terfa	ices oi	n primary

#ping mpls rsvp egress 26.26.26.26 detail Sending 5 MPLS Echos to 26.26.26.26, timeout is 5 seconds Codes: '!' - Success, 'Q' - request not sent, '.' - timeout, 'x' - Retcode 0, 'M' - Malformed Request, 'm' - Errored TLV, 'N' - LBL Mapping Err, 'D' - DS Mismatch, 'U' - Unknown Interface, 'R' - Transit (LBL Switched), 'B' - IP Forwarded, 'F' No FEC Found, 'f' - FEC Mismatch, 'P' - Protocol Error, 'X' - Unknown code, 'Z' - Reverse FEC Validation Failed

Type 'Ctrl+C' to abort

! seq_num = 1 58.58.58.2 0.80 ms
! seq num = 2 58.58.58.2 0.59 ms
! seq num = 3 58.58.58.2 0.47 ms
! seq num = 4 58.58.58.2 0.49 ms
! seq_num = 5 58.58.58.2 0.54 ms
Success Rate is 100.00 percent (5/5)
round-trip min/avg/max = 0.47/0.63/0.80
#trace mpls rsvp egress 26.26.26.26 detail
Tracing MPLS Label Switched Path to 26.26.26.26, timeout is 5 seconds
Codes:
'!' - Success, 'Q' - request not sent, '.' - timeout,
'x' - Retcode 0, 'M' - Malformed Request, 'm' - Errored TLV,
'N' - LBL Mapping Err, 'D' - DS Mismatch,
'U' - Unknown Interface, 'R' - Transit (LBL Switched),
'B' - IP Forwarded, 'F' No FEC Found, 'f' - FEC Mismatch,
'P' - Protocol Error, 'X' - Unknown code,
'Z' - Reverse FEC Validation Failed
mime lotxlici to short
Type curre to about
0 56.56.56.3 [Labels: 25601]
R 1 56.56.56.2 [Labels: 25601] 1.01 ms
R 2 41.41.41.2 [Labels: 25602] 0.95 ms
R 3 41.41.41.3 [Labels: 25602] 0.62 ms
R 4 56.56.56.3 [Labels: 25601] 0.79 ms
R 5 62.62.62.3 [Labels: 25601] 0.67 ms
R 6 54.54.54.4 [Labels: 25600] 0.57 ms
! 7 58.58.58.2 0.50 ms

Implementation Examples

To implement detour based protection in a ring topology, use the command detour-allow-primary-upstream-path that allows the detour formation to consider the upstream path of protected LSP. This is only applicable in ring topology.

New CLI Commands

detour-allow-primary-upstream-path

Use this command to ensure detour formation to consider the upstream path of protected LSPs. This is a deviation to RFC 4090 section 6.2 recommendation (https://datatracker.ietf.org/doc/html/rfc4090). This command is intended to be used in special cases where detour protection is required on ring topology if no alternate path is available.

Use the no parameter with this command to bypass the upstream path to the protected LSP when choosing a detour path.

Note: This command is intended to be used in ring topology if detour support is required at the cost of resource and link bandwidth. This command is not recommended to be configured otherwise.

Command Syntax

detour-allow-primary-upstream-path
no detour-allow-primary-upstream-path

Parameters

None

Default

By default, detour formation excludes the protected LSP upstream path as per RFC 4090 section 6.2 recommendations.

Command Mode

Router mode

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

```
#configure terminal
(config) #router rsvp
(config-router) #detour-allow-primary-upstream-path
(config-router) #commit
(config-router) #no detour-allow-primary-upstream-path
(config-router) #commit
```

Abbreviations

The following are some key abbreviations and their meanings relevant to this document:

Acronym	Description
FRR	Fast Reroute
LSP	Label Switched Path
OSPF	Open Shortest Path First
PLR	Point of Local Repair

Glossary

The following provides definitions for key terms used throughout this document:

Detour formation in the ring topology	The detour formation in the ring topology is a mechanism to reroute the data traffic over the backup path when a failure or congestion occurs in the primary Label Switched Path (LSP).
PLR node	A PLR node is a network device that reacts and takes action when a link fails.
Primary LSP	The primary LSP is the default path of the forwarding data packets from the source device to the destination device.
Protected LSP	A protected LSP is a primary LSP with a backup path in an MPLS network. When there is an issue or a failure in the primary LSP, the traffic is rerouted through the backup path, protecting the primary LSP.

RSVP Tunnel	RSVP tunnels are logical paths through which data traffic traverses in an IP network.
Upstream path of the protected LSP	The upstream path of the protected LSP is the section of the network that precedes the PLR node in the network.

Commit Rollback

Overview

The Commit Rollback capability in Common Management Layer Commands (CMLSH) is designed to execute a rollback operation for a set of configurations that were previously committed, with each commit operation identified by a unique commit ID. The Commit ID is numeric value and is generated by the CMLSH Commit, Confirmed Commit and Commit Rollback.

This Commit Rollback application is used for rolling back the commits that are performed after the specified commit ID whether they were executed through either Commit or Confirmed Commit operations.

Here, you find the description for Commit and Confirmed Commit:

- Commit operation: Involves committing the candidate configuration to the running configuration.
- **Confirmed Commit operation**: Provides more options to the commit operation with timeout parameter, user could provide timeout for the commit (default is 300 seconds).

During this timeout interval, users can either confirm the commit or cancel it, and if no confirmation or cancellation is provided before the timer expires, commit will be automatically rolled back after timeout. For an example, see the Example section of *commit-rollback* CLI.

Feature Characteristics

The Confirmed-Commit operation temporarily applies the configuration for the duration specified in seconds. If the user does not confirm the configuration within this timeframe, an automatic rollback will be initiated once the timer expires. For committing the configurations with timings, see *commit*.

Once the configurations are confirmed, users can use the commit rollback operation to revert the configuration, whether it is for a commit operation or a confirmed commit operation.

Benefits

With the integration of CMLSH Commit Rollback with Standard or Confirmed Commit, users can initiate a rollback operation for any specific commit, utilizing the associated commit ID to revert the configurations to their previous state. In this way, reverting to an earlier state, functional configuration is possible in case the new configuration is compromised or if the configuration makes the device unstable.

Prerequisites

Before configuring this operation, enable cml commit-history to ensure the commit records are stored in the commit history list. By default, cml commit-history is enabled. For enabling or disabling it, see *cml commit-history* (*enable* | *disable*).

Commands for Commit Rollback

For the commands, refer to the *Common Management Layer Commands* section in the *System Management Command Reference guide*.

Abbreviations

List of key terms used in this document is:

Term	Description
CMLSH	Common Management Layer Commands

Improved Management

This section, describes the network monitoring and configuration enhancements introduced in the Release 6.4.1.

- Route Monitor
- DHCP group

Route Monitor

Overview

Object Tracking provides a mechanism for tracking the reachability status of objects, such as IP status, using Internet Protocol Service Level Agreement (IP SLA). This feature empowers users to monitor the state of these objects and make decisions based on their status. It permits the configuration of multiple track objects on interfaces, delivering flexibility in managing network link status.

Feature Characteristics

Object Tracking establishes a distinct separation between the tracked objects and the actions initiated by a client when there's a change in the state of a tracked object. Users can configure object tracking types as any or all on the interface, alongside track IDs that specify which statuses to monitor. Modify the interface's link status to either up or down based on the selected track type and the statuses of the associated track IDs.

When using Track type all, the feature performs a Boolean AND operation, requiring every object configured on the interface to be in an up state for the interface itself to be considered up. If any of these objects are not in an up state, the interface is set to down.

Conversely, Track type any operates as a Boolean OR function, necessitating that at least one object configured on the interface must be in an up state for the interface to remain up. If none of the tracked objects are in an up state, the interface is marked as down.

Benefits

Users can ensure network reliability by defining specific tracking criteria and actions, allowing them to take appropriate measures when tracked objects experience status change. This contributes to improved network management and performance.

Prerequisites

Before configuring and utilizing Object Tracking, ensure the following prerequisites:

Track IDs: Users must define and configure the track IDs and corresponding objects they want to track for reachability. These track IDs are essential for the feature to work effectively. Deleting all track IDs from the interface will bring the interface up if it was previously down.

Interface Configuration: The feature involves configuring track types on interfaces. Therefore, ensuring that the interfaces are correctly configured and operational is important. In cases where an interface has both object tracking configurations and next-hop reachability, deleting the object tracking configurations is necessary to bring the interface back up if it goes down.

Object Tracking Criteria: Define the specific criteria and conditions for tracking an object's reachability, such as IP status, using IP SLA.

Configuration

The below topology illustrates a network configuration involving three routers, R1, R2, and R3, with a central device referred to as the Device Under Test (DUT) positioned in the middle. This topology represents a linear or sequential network structure that showcases the Route Monitor feature.

Topology

A series of configurations were implemented on routers R1, R2, and R3, as well as on the DUT, to showcase the functionality of the Route Monitor feature. The objective was to demonstrate the configuration of network routers to monitor the reachability status of specific IPv4 and IPv6 addresses using IP SLA and illustrate that these configurations can work in conjunction with the Route Monitor feature to enable informed decisions based on the reachability status of tracked objects.

IPv4 Configuration

DUT

Use the following configuration to set up an IP SLA and enable object tracking on a network device. These commands assign IPv4 addresses to interfaces, configure specific IP SLA parameters such as threshold, timeout, and frequency, create a time-range for scheduling measurements, and establish static routes with nexthop addresses. Configure object tracking to monitor the reachability of tracked objects. These configurations highlight the versatility and functionality of the network device by allowing it to monitor IPv4 addresses, make decisions based on object tracking, and optimize network operations.

DUT#configure terminal	Enter configure mode.
DUT(config)#interface xe50	Enter interface mode xe50.
DUT(config-if)#ip address 2.2.2.1/24	Assign the IP address $2.2.2.1$ with a subnet mask of $/24$ to interface xe50.
DUT(config-if)#exit	Exit interface mode xe50.
DUT(config)#interface xe51	Enter interface mode xe51.
DUT(config-if)#ip address 1.1.1.2/24	Assign the IP address 1.1.1.2 with a subnet mask of /24 to interface xe51.
DUT(config-if)#exit	Exit interface mode xe51.
DUT(config)#ip sla 1	Create an IP SLA operation with index 1.
DUT(config-ip-sla)#icmp-echo ipv4 3.3.3.1 source-interface xe50	Configure the SLA to send ICMP echo requests to destination IPv4 address $3.3.3.1$ using interface $xe50$ as the source.
DUT(config-ip-sla-echo)#threshold 1000	Set the threshold value for SLA to 1000 milliseconds.
DUT(config-ip-sla-echo)#timeout 1000	Set the timeout value for SLA to 1000 milliseconds.
DUT(config-ip-sla-echo)#frequency 5	Configure the frequency value for SLA to send ICMP echo packets every 5 seconds.
DUT(config-ip-sla-echo)#exit	Exit IP SLA echo mode.

DUT(config-ip-sla)#exit	Exit IP SLA mode.
DUT(config)#time-range tr1	Create a time range named tr1.
DUT(config-tr)#start-time 11:22 3 july 2021	Set the start time for the time range to 11:22 on July 3, 2021.
DUT(config-tr)#end-time after 200	Set the end time to be 200 minutes from the start time.
DUT(config-tr)#exit	Exit time-range mode.
DUT(config)#ip sla schedule 1 time-range tr1	Schedule IP SLA operation 1 to run within the specified time range $tr1$.
DUT(config)#track 1 ip sla 1 reachability	Creating a tracking object to monitor the reachability status of IP SLA operation 1.
DUT(config-object-track)#exit	Exit object track mode.
DUT(config)#ip route 3.3.3.0/24 2.2.2.2 track 1	Add a static route for the destination network $3.3.3.0/24$ with next-hop IP 2.2.2, tracked by tracking object 1.
DUT(config)#ip route 5.5.5.0/24 1.1.1.2	Add a static route for the destination network 5.5.5.0/24 with next-hop IP 1.1.1.2.
DUT(config)#ip route 6.6.6.0/24 2.2.2.2 track 1	Add a static route for the destination network $6.6.6.0/24$ with next-hop IP 2.2.2, tracked by tracking object 1.
DUT(config)#ip route 6.6.6.0/24 1.1.1.2 10	Add a static route for the destination network $6.6.6.0/24$ with next-hop IP 1.1.1.2 and a metric of 10.
DUT (config) #commit	Commit the candidate configuration to the running configuration.
DUT(config)#interface xe51	Enter interface mode xe51.
DUT(config-if)#object-tracking all	Enable object tracking for all tracking objects on interface xe51.
DUT(config-if)#object-tracking 1	Configure object tracking 1 on interface xe51.
DUT(config-if)#object-tracking 2	Configure object tracking 2 on interface xe51.
DUT(config-if)#exit	Exit interface mode.
DUT(config)#exit	Exit configure mode.

By configuring the routes below, R1, R2, and R3 effectively forward network traffic to its designated destinations within the network. These configurations actively contribute to efficient routing operations and ensure network traffic reaches its targets.

R1

R1#configure terminal	Enter configure mode.	
R1(config)#interface xel	Enter interface mode xe1.	
R1(config-if)#ip address 1.1.1.1/24	Assign the IP address $1.1.1.1$ with a subnet mask of $/24$ to interface xe1.	
R1(config-if)#commit	Commit the candidate configuration to the running configuration.	
R1(config-if)#exit	Exit interface mode xe1.	
R1(config)#ip route 2.2.2.0/24 1.1.1.2	Add a static route for the destination network $2.2.2.0/24$ with next-hop IP 1.1.1.2.	
R1(config)#ip route 3.3.3.0/24 1.1.1.2	Add a static route for the destination network $3.3.3.0/24$ with next-hop IP 1.1.1.2.	

Route Monitor

R1(config)#commit	Commit the candidate configuration to the running configuration.
R1(config)#exit	Exit configure mode.

R2

R2#configure terminal	Enter configure mode.
R2(config)#interface xel	Enter interface mode xe1.
R2(config-if)#ip address 2.2.2.2/24	Assign the IP address $2.2.2.2$ with a subnet mask of $/24$ to interface xe1.
R2(config-if)#exit	Exit interface mode xe1.
R2(config)#interface xe2	Enter interface mode xe2.
R2(config-if)#ip address 3.3.3.1/24	Assign the IP address $3.3.3.1$ with a subnet mask of $/24$ to interface $xe2$.
R2(config-if)#exit	Exit interface mode xe2.
R2(config)#ip route 1.1.1.0/24 2.2.2.1	Add a static route for the destination network $1.1.1.0/24$ with next-hop IP 2.2.2.1.
R2(config)#commit	Commit the candidate configuration to the running configuration.
R2(config)#exit	Exit configure mode.

R3

R3#configure terminal	Enter configure mode.
R3(config)#interface xel	Enter interface mode xe1.
R3(config-if)#ip address 3.3.3.2/24	Assign the IP address $3.3.3.2$ with a subnet mask of $/24$ to interface xe1.
R3(config-if)#commit	Commit the candidate configuration to the running configuration.
R3(config-if) #exit	Exit interface mode xe1.
R3(config)#ip route 1.1.1.0/24 3.3.3.1	Add a static route for the destination network $1.1.1.0/24$ with next-hop IP $3.3.3.1$.
R3(config)#ip route 2.2.2.0/24 3.3.3.1	Add a static route for the destination network $2.2.2.0/24$ with next-hop IP $3.3.3.1$.
R3(config)#commit	Commit the candidate configuration to the running configuration.
R3(config)#exit	Exit configure mode.

Validation

The following show output displays information about the IPv4 route table, IP SLA reachability tracking, and interface status on a network device running OcNOS.

DUT

```
DUT#show track
TRACK Id: 1
IP SLA 1 reachability
```

```
Reachability is UP
   4 changes, last change : 2019 Mar 14 14:53:47
Track interface : xe51
DUT#show ip route track-table
ip route 3.3.3.0 255.255.255.0 2.2.2.2 track 1 state is [up]
ip route 6.6.6.0 255.255.255.0 2.2.2.2 track 1 state is [up]
DUT#show ip route
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
      O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,
      ia - IS-IS inter area, E - EVPN,
      v - vrf leaked
      * - candidate default
IP Route Table for VRF "default"
          1.1.1.0/24 is directly connected, xe51, 00:55:38
С
С
           2.2.2.0/24 is directly connected, xe50, 00:49:50
           3.3.3.0/24 [1/0] via 2.2.2.2, xe50, 00:00:03
S
           5.5.5.0/24 [1/0] via 1.1.1.2, xe51, 00:08:12
S
           6.6.6.0/24 [1/0] via 2.2.2.2, xe50, 00:00:03
S
Gateway of last resort is not set
DUT#show interface brief xe51
Codes: ETH - Ethernet, LB - Loopback, AGG - Aggregate, MLAG - MLAG Aggregate
      FR - Frame Relay, TUN -Tunnel, PBB - PBB Logical Port, VP - Virtual Port
      CVP - Channelised Virtual Port, METH - Management Ethernet, UNK- Unknown
      ED - ErrDisabled, PD - Protocol Down, AD - Admin Down, IA - InActive
      PD(Min L/B) - Protocol Down Min-Links/Bandwidth
      OTD - Object Tracking Down
      DV - DDM Violation, NA - Not Applicable
      NOM - No operational members, PVID - Port Vlan-id
      Ctl - Control Port (Br-Breakout/Bu-Bundle)
   _____
Ethernet Type PVID Mode Status Reason Speed Port ch# Ctl Br/Bu Loopbk Interface
_____
xe51
        ETH -- routed down OTD 10g -- No
                                                              No
```

IPv6 Configuration

DUT

Use the following configuration to set up an IP SLA and enable object tracking on a network device. These commands assign IPv6 addresses to interfaces, configure specific IP SLA parameters such as threshold, timeout, and frequency, create a time-range for scheduling measurements, and establish static routes with nexthop addresses. Configure object tracking to monitor the reachability of tracked objects. These configurations highlight the versatility and functionality of the network device by allowing it to monitor IPv6 addresses, make decisions based on object tracking, and optimize network operations.

DUT#configure terminal	Enter configure mode.
DUT(config)#interface xe50	Enter interface mode xe50.
DUT(config-if)#ipv6 address 2000::1/64	Assign an IPv6 address ($2000::1/64$) to interface $xe50$.
DUT(config-if)#exit	Exit interface mode xe50.
DUT(config)#interface xe51	Enter interface mode xe51.
DUT(config-if)#ipv6 address 1000::2/64	Assign an IPv6 address (1000::2/64) to interface xe51.

DUT(config-if)#exit	Exit interface mode xe51.
DUT(config)#ip sla 1	Create an IP SLA operation with index 1.
DUT(config-ip-sla)#icmp-echo ipv6 3000::1 source-interface xe50	Configure the SLA to send IPv6 ICMP echo requests to destination IPv6 address $3000::1$ using interface $xe50$ as the source.
DUT(config-ip-sla-echo)#threshold 1000	Set the threshold value for SLA to 1000 milliseconds.
DUT(config-ip-sla-echo)#timeout 1000	Set the timeout value for SLA to 1000 milliseconds.
DUT(config-ip-sla-echo)#frequency 5	Configure the frequency value for SLA to send IPv6 ICMP echo packets every 5 seconds.
DUT(config-ip-sla-echo)#exit	Exit IP SLA echo mode.
DUT(config-ip-sla)#exit	Exit IP SLA mode.
DUT(config)#time-range tr1	Create a time range named tr1.
DUT(config-tr)#start-time 11:22 3 july 2021	Set the start time for the time range to 11:22 on July 3, 2021.
DUT(config-tr)#end-time after 200	Set the end time to be 200 minutes from the start time.
DUT(config-tr)#exit	Exit time-range mode.
DUT(config)#ip sla schedule 1 time-range tr1	Schedule IP SLA operation 1 to run within the specified time range tr1.
DUT(config)#track 1 ip sla 1 reachability	Creating a tracking object to monitor the reachability status of IP SLA operation 1 .
DUT(config-object-track)#exit	Exit object track mode.
DUT(config)#ipv6 route 3000::0/64 2000::2 track 1	Add an IPv6 static route for the destination network 3000::0/64 with a next-hop IPv6 2000::2, tracked by tracking object 1.
DUT(config)#ipv6 route 3333::1/128 1000::1	Add an IPv6 static route for the destination network 3333::1/128 with next-hop IPv6 1000::1.
DUT(config)#ipv6 route 3333::1/128 2000::2 track 1	Add an IPv6 static route for the destination network 6.6.6.0/24 with next-hop IPv6 2000::2, tracked by tracking object 1.
DUT(config)#ipv6 route 3333::1/128 1000::1 10	Add an IPv6 static route for the destination network 3333::1/128 with next-hop IP 1000::1 and a metric of 10.
DUT(config)#commit	Commit the candidate configuration to the running configuration.
DUT(config)#interface xe51	Enter interface mode xe51.
DUT(config-if)#object-tracking all	Enable object tracking for all tracking objects on interface xe51.
DUT(config-if)#object-tracking 1	Configure object tracking 1 on interface $xe51$.
DUT(config-if)#object-tracking 2	Configure object tracking 2 on interface xe51.
DUT(config-if)#exit	Exit interface mode.
DUT(config)#exit	Exit configure mode.

By configuring the routes below, R1, R2, and R3 effectively forward network traffic to its designated destinations within the network. These configurations actively contribute to efficient routing operations and ensure network traffic reaches its targets.

R1

R1#configure terminal	Enter configure mode.
R1(config)#interface xel	Enter interface mode xe1.
R1(config-if)#ipv6 address 1000::1/64	Assign the IPv6 address 1000::1 with a subnet mask of / 64 to interface xe1.
R1(config-if)#commit	Commit the candidate configuration to the running configuration.
R1(config-if)#exit	Exit interface mode xe1.
R1(config)#ipv6 route 2000::0/64 1000::2	Add an IPv6 static route for the destination network 2000::0/64 with next-hop IPv6 1000::2.
R1(config)#ipv6 route 3000::0/64 1000::2	Add an IPv6 static route for the destination network 3000::0/64 with next-hop IPv6 1000::2.
R1(config)#commit	Commit the candidate configuration to the running configuration.
R1(config)#exit	Exit configure mode.

R2

R2#configure terminal	Enter configure mode.
R2(config)#interface xel	Enter interface mode xe1.
R2(config-if)#ipv6 address 2000::2/64	Assign the IPv6 address 2000::2 with a subnet mask of / 64 to interface xe1.
R2(config-if)#exit	Exit interface mode xe1.
R2(config)#interface xe2	Enter interface mode xe2.
R2(config-if)#ipv6 address 3000::1/64	Assign the IPv6 address $3000::1$ with a subnet mask of / 64 to interface $xe2$.
R2(config-if)#exit	Exit interface mode xe2.
R2(config)#ipv6 route 1000::0/64 2000::1	Add an IPv6 static route for the destination network 1000::0/64 with next-hop IPv6 2000::1.
R2(config)#commit	Commit the candidate configuration to the running configuration.
R2(config)#exit	Exit configure mode.

R3

R3#configure terminal	Enter configure mode.
R3(config)#interface xel	Enter interface mode xe1.
R3(config-if)#ipv6 address 3000::2/64	Assign the IPv6 address 3000::2 with a subnet mask of / 64 to interface xe1.
R3(config-if)#commit	Commit the candidate configuration to the running configuration.
R3(config-if)#exit	Exit interface mode xe1.
R3(config)#ipv6 route 1000::0/64 3000::1	Add an IPv6 static route for the destination network 1000::0/64 with next-hop IPv6 3000::1.
R3(config)#ipv6 route 2000::0/64 3000::1	Add an IPv6 static route for the destination network 2000::0/64 with next-hop IPv6 3000::1.
--	---
R3(config)#commit	Commit the candidate configuration to the running configuration.
R3(config)#exit	Exit configure mode.

The following show output displays the information about IP SLA reachability tracking, IPv6 route tables, and interface status on a network device running OcNOS.

DUT

```
DUT#show track
TRACK Id: 1
 IP SLA 1 reachability
 Reachability is UP
   4 changes, last change : 2019 Mar 14 14:53:47
Track interface : xe51
DUT#show ip route track-table
 ipv6 route 3000::0/64 2000::2 track 1 state is [up]
ipv6 route 3333::1/128 2000::2 track 1 state is [up]
DUT#show ip sla summary
IP SLA Operation Summary
Codes: * active, ^ inactive
                                 stats Return
(usec)
                                                   Last
Run
ID
     Type
             Destination Stats
_____
*1 icmp-echo 3000::1
                                   16000 OK
                                                     2019 Mar 11 1
6:11:40
_____
DUT#show ipv6 route
IPv6 Routing Table
Codes: K - kernel route, C - connected, S - static, D- DHCP, R - RIP,
     O - OSPF, IA - OSPF inter area, E1 - OSPF external type 1,
     E2 - OSPF external type 2, E - EVPN N1 - OSPF NSSA external type 1,
     N2 - OSPF NSSA external type 2, i - IS-IS, B - BGP,
     v - vrf leaked
Timers: Uptime
IP Route Table for VRF "default"
С
    ::1/128 via ::, lo, 00:04:46
      1000::/64 via ::, xe51, 00:02:48
С
С
      2000::/64 via ::, xe50, 00:02:48
S
      3000::/64 [1/0] via 2000::2, xe50, 00:02:48
      3333::1/128 [1/0] via 2000::2, xe50, 00:02:48
S
DUT#show interface brief xe51
Codes: ETH - Ethernet, LB - Loopback, AGG - Aggregate, MLAG - MLAG Aggregate
      FR - Frame Relay, TUN -Tunnel, PBB - PBB Logical Port, VP - Virtual Port
      CVP - Channelised Virtual Port, METH - Management Ethernet, UNK- Unknown
      ED - ErrDisabled, PD - Protocol Down, AD - Admin Down, IA - InActive
      PD(Min L/B) - Protocol Down Min-Links/Bandwidth
      OTD - Object Tracking Down
      DV - DDM Violation, NA - Not Applicable
      NOM - No operational members, PVID - Port Vlan-id
      Ctl - Control Port (Br-Breakout/Bu-Bundle)
 _____
Ethernet Type PVID Mode Status Reason Speed Port Ch # Ctl Br/Bu Loopbk
Interface
```

xe51	ETH	 routed	down	OTD	10g	 No	No

Implementation Examples

Here is a practical scenario and use case for Object Tracking implementation:

Link Redundancy: Object Tracking can be used to monitor the reachability of primary and backup network links. If the primary link fails or becomes congested, the system can automatically switch traffic to the backup link, ensuring uninterrupted network connectivity.

Load Balancing: Object Tracking helps optimize load balancing by continuously assessing the health and availability of servers or paths. If a server becomes overloaded or fails, traffic can be intelligently redirected to healthy servers, improving resource utilization and user experience.

Failover Testing and Verification: Object Tracking provides a mechanism for simulating network failures and verifying failover mechanisms. By configuring tracked objects to mimic real-world conditions, network administrators can assess the resilience of their network configurations and ensure they perform as expected during failures.

New CLI Commands

The Route Monitor feature introduces the following configuration commands. For more information, refer to the *Interface Commands*, *IP Service Level Agreements Commands*, and *Object Tracking Commands* chapters in the System Management Guide, Release 6.4.1.

object-tracking

Use this command to configure track IDs and options on the interfaces.

Use the no parameter with this command to remove the configurations.

These commands configure object tracking on interfaces, with specific track IDs and tracked objects set to determine what gets tracked and affects the interface's status.

The object-tracking command provides flexibility, enabling both all and any tracking behaviors for influencing the interface's status. A maximum of 8 track IDs can be configured per interface. It is possible to configure the same track IDs or options on multiple interfaces.

Command Syntax

```
object-tracking <1-500>
object-tracking <all | any>
no object-tracking <1-500>
no object-tracking <all | any>
```

Parameters

<1-500> Object tracking ID all Boolean AND operation. Each object configured on the interface must be in an up state for the interface itself to be in an up state; otherwise, it will be brought down. any Boolean OR operation. At least one object configured on the interface must be in an up state; otherwise, the interface will be brought down. **Route Monitor**

Default

None

Command Mode

Interface mode

Applicability

This command was introduced in OcNOS version 6.4.1.

Example

Here are some example commands for configuring object tracking in the interface mode.

```
OcNOS(config)#int xe5
OcNOS(config-if)#object-tracking 10
OcNOS(config-if)#object-tracking all
OcNOS(config-if)#commit
OcNOS(config-if)#no object-tracking 10
OcNOS(config-if)#no object-tracking all
OcNOS(config-if)#commit
OcNOS(config-if)#commit
OcNOS(config-if)#exit
```

Troubleshooting

Interface Status: Verify the status of the interface linked with object tracking. If the configured track type is all, confirm that all tracked objects are in an up state to consider the interface as up. In the case of the track type being any, ensure that at least one tracked object is up to maintain the interface in an up state.

Abbreviations

The following are some key abbreviations and their meanings relevant to this document:

Acronym	Description
NSM	Network and Service Management
IP SLA	Internet Protocol Service Level Agreement
DUT	Device Under Test

Glossory

The following provides definitions for key terms used throughout this document.

Object Tracking	A feature that monitors the reachability status of objects, such as IP status, using IP SLA and allows users to take actions based on their status.
Track Object	An object configured for tracking within the Object Tracking feature. These objects can represent specific network components or conditions, such as IP addresses or link statuses.
Track ID	A unique identifier associated with a track object that enables the system to monitor and assess the status of that object.
Track Type	The configuration specifies how the interface's link status should be determined based on the statuses of associated track objects. It can be set to all or any.
Track Type "All"	A track type that uses a Boolean AND function, requiring that all tracked objects be in an up state for the interface to be considered up.
Track Type "Any"	A track type that uses a Boolean OR function, ensuring that at least one tracked object is in an up state for the interface to remain up.

Route Monitor

DHCP Server Group

Overview

Dynamic Host Control Protocol (DHCP) Group provides the capability to specify multiple DHCP servers as a group on the DHCP relay agent and to correlate a relay agent interface with the server group. When the interface receives request messages from clients, the relay agent forwards the message to all the DHCP servers of the group. One or multiple DHCP servers in the group process the request and respond with an offer to the client. The client reviews the offer and sends the request message to the chosen server to obtain the network configuration that includes an IP address. The illustration below shows a DHCP client sending a request message to a DHCP relay agent that forwards the message to the three servers in the DHCP server group to get their network configuration. The DHCP client and DHCP relay agent run OcNOS, but the DHCP servers can be OcNOS or Linux devices.

Feature Characteristics

This feature enables the configuration of the DHCP server group and attaches it to a DHCP relay agent through the CLI and the NetConf interface. A DHCP server group can be attached with multiple DHCP relay uplink interfaces, but at a given time, a single DHCP relay uplink interface is allowed to be attached with a single DHCP server group. The attachment of the DHCP relay uplink interface to another DHCP server group dissociates its attachment with the earlier attached DHCP server group.

This feature helps to configure DHCP IPv4 and IPv6 groups and attach server IP addresses to the group. Creating a maximum of 32 IPv4 and 32 IPv6 groups per VRF is allowed, and configuring 8 DHCP servers is permitted for each DHCP server group.

Benefits

The DHCP relay agent forwards the request message from the DHCP client to multiple DHCP servers in the group. Forwarding the request message to multiple DHCP servers increases the reliability of obtaining the network configuration.

Configuration

Before configuring the DHCP client and the DHCP relay agent, make sure that DHCP server is configured and the dhcpd service is running in the DHCP server.

Topology

In the below example, DHCP server1 and DHCP server2 (OcNOS or Linux devices) are connected to the DHCP relay agent (an OcNOS device), and the DHCP relay is connected to a DHCP client (an OcNOS device). The DHCP client sends discover message to the DHCP servers through the DHCP relay agent.

DHCP server group topology

Configuration

DHCP Client Configuration for IPv4

OcNOS#configure terminal	Enter configure mode.
OcNOS(config)#feature dhcp	Enable the feature DHCP. This will be enabled by default.
OcNOS(config)#int xe15	Enter interface mode xe15.
OcNOS(config-if)#ip address dhcp	The client requests for the IP address to the server, once it receives the acknowledgment from the server, it assigns the IP address to the interface in which this command is enabled.

OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS(config-if)#exit	Exit interface mode.

The below shows the running configuration of the DHCPv4 client node:

```
OcNOS#show running-config dhcp
interface eth0
 ip address dhcp
L
interface xel5
 ip address dhcp
OcNOS#show ip interface brief
'*' - address is assigned by dhcp client
Interface
                      IP-Address
                                        Admin-Status
                                                               Link-Status
cd1
                      unassigned
                                       up
                                                               down
cd3
                      unassigned
                                                               down
                                        up
ce0
                      unassigned
                                                               down
                                        up
ce2
                      unassigned
                                                               down
                                        up
                     *10.12.121.156
eth0
                                                               up
                                        up
                      127.0.0.1
lo
                                        up
                                                               up
lo.management
                      127.0.0.1
                                       up
                                                               up
xe4
                      unassigned
                                                               down
                                        up
xe5
                      unassigned
                                                               down
                                        up
xe6
                      unassigned
                                        up
                                                               down
xe7
                      unassigned
                                        up
                                                               down
                      unassigned
                                                               down
xe8
                                        up
xe9
                      unassigned
                                                               down
                                        up
xe10
                      unassigned
                                                               down
                                        up
xell
                      unassigned
                                                               down
                                        up
xe12
                      unassigned
                                        up
                                                               down
                      unassigned
xe13
                                                               down
                                        up
xe14
                      unassigned
                                                               down
                                       up
xe15
                     *20.20.20.1
                                                               up
                                        up
xe16
                      unassigned
                                                               down
                                        up
xe17
                      unassigned
                                                               down
                                        up
xe18
                      unassigned
                                                               down
                                        up
xe19
                      unassigned
                                                               down
                                        up
xe20
                      unassigned
                                                               down
                                        up
xe21
                      unassigned
                                                               down
                                        up
xe22
                      unassigned
                                                               down
                                        up
xe23
                      unassigned
                                                               down
                                        up
xe24
                      unassigned
                                                               down
                                        up
xe25
                      unassigned
                                                               down
                                       up
xe26
                      unassigned
                                                               down
                                        up
xe27
                      unassigned
                                                               down
                                        up
OcNOS#--
OcNOS#
OcNOS#show ip int xe15 br
```

'*' - address is assigned by dhcp client

Interface xe15 OcNOS# IP-Address *20.20.20.1 Admin-Status up Link-Status up

DHCP Relay Agent Configuration for IPv4

OcNOS#configure terminal	Enter configure mode.
OcNOS(config)#ip dhcp relay server-group dhcp-relay-gp	Configure relay server-group group name in global mode.
OcNOS(dhcp-relay-group)#server 10.10.10.2	Configure server 10.10.10.2.
OcNOS (dhcp-relay-group) #exit	Exit DHCP relay group.
OcNOS(config)#interface xe15	Enter interface mode xe15.
OcNOS(config-if)#ip address 20.20.20.2/24	Configure IPv4 address 20.20.20.2 on the interface xe15.
OcNOS(config-if)#ip dhcp relay	Relay should be configured on the interface connecting to the client.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS(config-if)#exit	Exit interface mode.
OcNOS(config)#interface xe8	Enter interface mode xe8.
OcNOS(config-if)#ip address 10.10.10.3/24	Configure IPv4 address $10.10.10.3$ on the interface $xe8$.
OcNOS(config-if)#ip dhcp relay uplink	Configure relay uplink on the device connecting the server.
OcNOS(config-if)#ip dhcp relay server-select dhcp-relay-gp	Configure relay server-select group name on the device connected to the server.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS(config-if)#exit	Exit interface mode.
OcNOS(config)#ip dhcp relay server-group dhcp-relay-gp	Configure relay server-group group name in global mode.
OcNOS(dhcp-relay-group)#server 40.10.10.2	Configure IPv4 DHCP server address 40.10.10.2 on the server group.
OcNOS(dhcp-relay-group)#commit	Commit the candidate configuration to the running configuration.
OcNOS (dhcp-relay-group) #exit	Exit DHCP relay group.
OcNOS(config)#interface xell	Enter interface mode xe11.
OcNOS(config-if)#ip address 40.10.10.3/24	Configure IPv4 address 40.10.10.3 on the interface xe11.
OcNOS(config-if)#ip dhcp relay uplink	Configure relay uplink on the device connecting the server.
OcNOS(config-if)#ip dhcp relay server-select dhcp-relay-gp	Configure relay server-select group name on the device connected to the server.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS(config-if)#exit	Exit interface mode.

The below shows the running configuration of the DHCPv4 relay agent node:

```
OcNOS#show running-config dhcp
interface eth0
ip address dhcp
1
!
ip dhcp relay server-group dhcp-relay-gp
server 10.10.10.2
server 40.10.10.2
interface xe8
ip dhcp relay uplink
ip dhcp relay server-select dhcp-relay-gp
1
interface xell
ip dhcp relay uplink
ip dhcp relay server-select dhcp-relay-gp
interface xe15
ip dhcp relay
!
OcNOS#
OcNOS#
OcNOS#show ip dhcp relay
DHCP relay service is Enabled.
VRF Name: default
 Option 82: Disabled
  Interface
                          Uplink/Downlink
  _____
                          _____
  xe8
                          Uplink
  xel1
                          Uplink
  xe15
                          Downlink
  Interface
                          Group-Name
                                                  Server
  _____
                          _____
                                                  ____
                          dhcp-relay-gp 10.10.10.2,40.10.10.2
  xell
Incoming DHCPv4 packets which already contain relay agent option are FORWARDED
u
nchanged.
OcNOS#
```

DHCP Server-1 Configuration for IPv4

OcNOS#configure terminal	Enter configure mode.
OcNOS(config)ip dhcp server pool DHCP- Server-1	Configure DHCP server group for server in global mode.
OcNOS(dhcp-config)#network 10.10.10.0 netmask 255.255.2	Configure network 10.10.10.0 and netmask 255.255.25.0.
OcNOS(dhcp-config)#address range low-address 10.10.10.1 high-address 10.10.10.254	Configure address range from 10.10.10.1 to 10.10.254.
OcNOS(dhcp-config)#dns-server 192.2.2.2	Configure the DNS server 192.2.2.2.

OcNOS (dhcp-config) #commit	Commit the candidate configuration to the running configuration.
OcNOS (dhcp-config) #exit	Exit DHCP config mode.
OcNOS(config)#ip dhcp server pool DHCP-SER	Configure DHCP server group for client in global mode.
OcNOS(dhcp-config)#network 20.20.20.0 netmask 255.255.2	Configure network 20.20.20.0 and netmask 255.255.255.0.
OcNOS(dhcp-config)#address range low-address 20.20.20.1 high-address 20.20.20.30	Configure address range from 20.20.20.1 to 20.20.30.
OcNOS (dhcp-config) #commit	Commit the candidate configuration to the running configuration.
OcNOS (dhcp-config) #exit	Exit dhcp config mode.
OcNOS(config)#interface xe8	Enter interface mode xe8.
OcNOS(config-if)#ip address 10.10.10.2/24	Configure IP address on the interface xe8.
OcNOS(config-if)#ip dhcp server	Server should be configured on the interface while connected to the relay.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS (config-if) #exit	Exit interface mode.
OcNOS(config)#ip route 20.20.20.0/24 10.10.10.3	Configure static route of 20.20.20.0/24 by next hop interface 10.10.10.3.
OcNOS (config) #commit	Commit the candidate configuration to the running configuration.
OcNOS (config) #exit	Exit config mode.

The below shows the running configuration of the DHCPv4 Server-1 node:

```
OcNOS#show running-config dhcp
interface eth0
ip address dhcp
!
1
ip dhcp server pool DHCP-Server-1
network 10.10.10.0 netmask 255.255.255.0
address range low-address 10.10.10.1 high-address 10.10.254
dns-server 192.2.2.2
ip dhcp server pool DHCP-SER
network 20.20.20.0 netmask 255.255.255.0
address range low-address 20.20.20.1 high-address 20.20.20.30
interface xe8
ip dhcp server
!
OcNOS#
```

DHCP Server-2 Configuration for IPv4

OcNOS#configure terminal	Enter configure mode.
OcNOS(config)#ip dhcp server pool DHCP- Server-2	Configure DHCP server group for server in global mode.
OcNOS(dhcp-config)#network 40.10.10.0 netmask 255.255.2	Configure network 40.10.10.0 and netmask 255.255.255.0.
OcNOS(dhcp-config)#address range low-address 40.10.10.1 high-address 40.10.10.254	Configure address range from 40.10.10.1 to 40.10.10.254.
OcNOS(dhcp-config)#dns-server 192.2.2.2	Configure DNS server 192.2.2.2.
OcNOS(dhcp-config)#ip dhcp server pool DHCP- SER	Configure DHCP server group for client in global mode.
OcNOS(dhcp-config)#network 20.20.20.0 netmask 255.255.255.0	Configure network 20.20.20.0 and netmask 255.255.255.0.
OcNOS(dhcp-config)#address range low-address 20.20.20.1 high-address 20.20.20.30	Configure address range from 20.20.20.1 to 20.20.30.
OcNOS(dhcp-config)#commit	Commit the candidate configuration to the running configuration.
OcNOS (dhcp-config) #exit	Exit DHCPv6 config mode.
OcNOS(config)#interface xell	Enter interface mode xe11.
OcNOS(config-if)#ip address 40.10.10.2/24	Configure IP address 40.10.10.2/24 on the interface xe11.
OcNOS(config-if)#ip dhcp server	Server should be configured on the interface while connected to the relay.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS (config-if) #exit	Exit interface mode.
OcNOS(config)#ip route 20.20.20.0/24 40.10.10.3	Configure static route 20.20.20.0/24 by next hop interface 40.10.10.3.
OcNOS (config) #commit	Commit the candidate configuration to the running configuration.
OcNOS (config) #exit	Exit config mode.

Validation

The below shows the running configuration of the DHCPv4 Server-2 node:

```
OcNOS#show running-config dhcp
interface eth0
ip address dhcp
!
!
ip dhcp server pool DHCP-Server-2
network 40.10.10.0 netmask 255.255.255.0
address range low-address 40.10.10.1 high-address 40.10.10.254
dns-server 192.2.2.2
ip dhcp server pool DHCP-SER
network 20.20.20.0 netmask 255.255.255.0
```

```
address range low-address 20.20.20.1 high-address 20.20.20.30
interface xel1
    ip dhcp server
!
OcNOS#
```

DHCP Client Configuration for IPv6

OcNOS#configure terminal	Enter configure mode.
OcNOS (config)#feature dhcp	Enable the feature dhcp. This is enabled by default.
OcNOS(config)#int xe15	Enter interface mode xe15.
OcNOS(config-if)#ipv6 address dhcp	The client requests for the IPv6 address to the server. Once it receives the acknowledgment from the server, it assigns the IPv6 address to the interface in which this command is enabled.
OcNOS (config-if) #commit	Commit the candidate configuration to the running configuration.
OcNOS(config-if)#exit	Exit interface mode.

Validation

The below shows the running configuration of the DHCPv6 client node:

```
OcNOS#show running-config dhcp
interface eth0
ip address dhcp
!
interface xe15
ipv6 address dhcp
```

OcNOS#show ipy6 int b	or	
Interface	IPv6-Address	Admin-Sta
cd1	unassigned	[up/down]
cd3	unassigned	[up/down]
ce0	unassigned	[up/down]
ce2	unassigned	[up/down]
eth0	fe80::d277:ceff:fe9f:4500	[up/up]
lo	::1	[up/up]
lo.management	::1	[up/up]
xe4	unassigned	[up/down]
xe5	unassigned	[up/down]

хеб	unassigned	[up/down]
xe7	unassigned	[up/down]
xe8	unassigned	[up/down]
xe9	unassigned	[up/down]
xel0	unassigned	[up/down]
xell	unassigned	[up/down]
xe12	unassigned	[up/down]
xe13	unassigned	[up/down]
xel4	unassigned	[up/down]
vo15	*3001124	
XCIU	fe80::d277:ceff:feda:4511	[up/up]
1.0		
xelb	unassigned	[up/down]
xe17	unassigned	[up/down]
xel8	unassigned	[up/down]
xel9	unassigned	[up/down]
xe20	unassigned	[up/down]
xe21	unassigned	[up/down]
xe22	unassigned	[up/down]
xe23	unassigned	[up/down]
xe24	unassigned	[up/down]
xe25	unassigned	[up/down]
xe26	unassigned	[up/down]
xe27	unassigned	[up/down]
OcNOS#		

OcNOS#show ipv6 int >	xe15 br	
Interface	IPv6-Address	Admin-Sta
tus		
xe15	*3001::124	
	fe80::d277:ceff:feda:4511	[up/up]

DHCP Relay Agent Configuration for IPv6

OcNOS#configure terminal	Enter configure mode.
OcNOS(config)#ipv6 dhcp relay server-group dhcpv6-relay-gp	Configure relay server-group group name in global mode.
OcNOS(dhcp6-relay-group)#server 2001::2	Configure server address 2001::2.
OcNOS(dhcp6-relay-group)#commit	Commit the candidate configuration to the running configuration.
OcNOS(dhcp6-relay-group)#exit	Exit DHCPv6 relay group.
OcNOS(config)#interface xe8	Enter interface mode xe8.
OcNOS(config-if)#ipv6 address 2001::3/64	Configure IPv6 address 2001::3/64 on the interface xe8.
OcNOS(config-if)#ipv6 dhcp relay uplink	Configure relay uplink on the device connecting the server.
OcNOS(config-if)#ipv6 dhcp relay server- select dhcpv6-relay-gp	Configure relay server-select group name on the device connected to the server.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS (config-if) #exit	Exit interface mode.
OcNOS(config)#interface xel5	Enter interface mode.
OcNOS(config-if)#ipv6 address 3001::2/64	Configure IPv6 address on the interface xe15.
OcNOS(config-if)#ipv6 dhcp relay	By default, this will be enabled. This command starts the IPv6 dhcp relay service.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS (config-if) #exit	Exit interface mode.
OcNOS(config)#ipv6 dhcp relay server-group dhcpv6-relay-gp	Configure relay server-group group name in global mode.
OcNOS(dhcp6-relay-group)#server 4001::2	Configure server address 4001::2.
OcNOS(dhcp6-relay-group)#commit	Commit the candidate configuration to the running configuration.
OcNOS (dhcp6-relay-group) #exit	Exit DHCPv6 relay group.
OcNOS(config)#interface xell	Enter interface mode.
OcNOS(config-if)#ipv6 address 4001::3/64	Configure IPv6 4001::3/64 address on the interface xe11.
OcNOS(config-if)#ipv6 dhcp relay uplink	Configure relay uplink on the device connecting the server.
OcNOS(config-if)#ipv6 dhcp relay server- select dhcpv6-relay-gp	Configure relay server-select group name on the device connected to the server.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS(config-if)#exit	Exit interface mode.

The below shows the running configuration of the DHCPv6 relay agent node:

```
OcNOS#show running-config dhcp
interface eth0
ip address dhcp
!
!
ipv6 dhcp relay server-group dhcpv6-relay-gp
 server 2001::2
 server 4001::2
interface xe8
ipv6 dhcp relay uplink
ipv6 dhcp relay server-select dhcpv6-relay-qp
1
interface xell
ipv6 dhcp relay uplink
ipv6 dhcp relay server-select dhcpv6-relay-gp
1
interface xe15
ipv6 dhcp relay
OcNOS#show ipv6 dhcp relay
IPv6 DHCP relay service is Enabled.
VRF Name: default
 DHCPv6 IA PD Route injection: Disabled
 Interface
                          Uplink/Downlink
  _____
                          _____
 xe8
                          Uplink
 xell
                          Uplink
 xe15
                          Downlink
 Interface
                          Group-Name
                                                 Server
  _____
                          _____
                                                  _____
 xell
                          dhcpv6-relay-gp 2001::2,4001::2
OcNOS#
```

DHCP Server-1 Configuration for IPv6

OcNOS#configure terminal	Enter configure mode.
OcNOS(config)#ipv6 dhcp server pool DHCPv6- Server-1	Configure DHCP server group for server in global mode.
OcNOS(dhcp6-config)#network 2001:: netmask 64	Configure network 2001:: and netmask 64.
OcNOS(dhcp6-config)#address range low- address 2001::1 high-address 2001::124	Configure address range from 2001::1 to 2001::124.
OcNOS(dhcp6-config)#ipv6 dhcp server pool DHCPv6-SER	Configure DHCP server group for client in global mode.
OcNOS(dhcp6-config)#network 3001:: netmask 64	Configure network 3001 :: and netmask 64.

OcNOS(dhcp6-config)#address range low- address 3001::1 high-address 3001::124	Configure address range from 3001::1 to 3001::124.
OcNOS (dhcp6-config) #commit	Commit the candidate configuration to the running configuration.
OcNOS (dhcp6-config) #exit	Exit DHCPv6 config mode.
OcNOS(config)#interface xe8	Enter interface mode xe8.
OcNOS(config-if)#ipv6 address 2001::2/64	Configure IPv6 address $2001::2/64$ on the interface $xe8$.
OcNOS(config-if)#ipv6 dhcp server	Server should be configured on the interface while connected to the relay.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS (config-if) #exit	Exit interface mode.
OcNOS(config)#ipv6 route 3001::/64 2001::3	Configure static route 3001::/64 by next hop interface 2001::3.
OcNOS (config) #commit	Commit the candidate configuration to the running configuration.
OcNOS (config) #exit	Exit config mode.

The below shows the running configuration of the DHCPv6 Server-1 node:

```
OcNOS#show running-config dhcp
interface eth0
ip address dhcp
!
!
ipv6 dhcp server pool DHCPv6-Server-1
network 2001:: netmask 64
address range low-address 2001::1 high-address 2001::124
ipv6 dhcp server pool DHCPv6-SER
network 3001:: netmask 64
address range low-address 3001::1 high-address 3001::124
interface xe8
ipv6 dhcp server
!
```

```
OcNOS#
```

DHCP Server-2 Configuration for IPv6

OcNOS#configure terminal	Enter configure mode.
OcNOS(config)#ipv6 dhcp server pool DHCPv6- Server-2	Configure dhcp server group for server in global mode.
OcNOS(dhcp6-config)#network 4001:: netmask 64	Configure network 4001:: and netmask 64.
OcNOS(dhcp6-config)#address range low- address 4001::1 high-address 4001::124	Configure address range from 4001::1 to 4001::124.

OcNOS(dhcp6-config)#ipv6 dhcp server pool DHCPv6-SER	Configure DHCP server group for client in global mode.
OcNOS(dhcp6-config)#network 3001:: netmask 64	Configure network 3001:: and netmask 64.
OcNOS(dhcp6-config)#address range low- address 3001::1 high-address 3001::124	Configure address range from 3001::1 to 3001::124.
OcNOS(dhcp6-config)#commit	Commit the candidate configuration to the running configuration.
OcNOS (dhcp6-config) #exit	Exit DHCPv6 config mode.
OcNOS(config)#interface xell	Enter interface mode xe11.
OcNOS(config-if)#ipv6 address 4001::2/64	Configure IPv6 address on the interface xe11.
OcNOS(config-if)#ipv6 dhcp server	Server should be configured on the interface while connected to the relay.
OcNOS(config-if)#commit	Commit the candidate configuration to the running configuration.
OcNOS (config-if) #exit	Exit interface mode.
OcNOS(config)#ipv6 route 3001::/64 4001::3	Configure static route 3001::/64 by next hop interface 4001::3.
OcNOS(config)#commit	Commit the candidate configuration to the running configuration.
OcNOS (config) #exit	Exit config mode.

The below shows the running configuration of the DHCPv6 Server-2 node:

```
OcNOS#show running-config dhcp
interface eth0
ip address dhcp
!
!
ipv6 dhcp server pool DHCPv6-Server-2
network 4001:: netmask 64
address range low-address 4001::1 high-address 4001::124
ipv6 dhcp server pool DHCPv6-SER
network 3001:: netmask 64
address range low-address 3001::1 high-address 3001::124
interface xel1
ipv6 dhcp server
!
OcNOS#
```

New CLI Commands

ip dhcp relay server-group

Use this command to create the DHCP IPv4 server group. This group lists the servers to which DHCP Relay forwards the DHCP client requests.

Use the no form of this command to unconfigure the DHCP IPv4 server group.

Command Syntax

```
ip dhcp relay server-group GROUP_NAME
no ip dhcp relay server-group GROUP_NAME
```

Parameters

GROUP_NAME Name of the DHCP server group (specify a maximum 63 alphanumeric characters).

Command Mode

Configure mode and VRF mode. In the configure mode, the DHCP IPv4 server group is created in the default VRF. In the configure-vrf mode, the DHCP IPv4 server group is created in the user-defined VRF.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The example below shows the creation of DHCP IPv4 server groups.

```
OcNOS(config)#ip vrf vrf1
OcNOS(config-vrf)#ip dhcp relay server-group Group1
OcNOS(dhcp-relay-group)#end
OcNOS#configure terminal
OcNOS(config)#ip dhcp relay server-group Group2
```

ip dhcp relay server-select

Use this command to attach the DHCP IPv4 server group to the DHCP relay uplink interface.

Use the no form of this command to remove the DHCP IPv4 server group attached to the DHCP relay interface.

Note: Attach the groups only to the DHCP relay uplink interfaces.

Command Syntax

```
ip dhcp relay server-select GROUP_NAME
no ip dhcp relay server-select
```

Parameters

GROUP_NAME Name of the DHCP server group (specify a maximum 63 alphanumeric characters).

Command Mode

Interface mode.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The below example shows attaching the DHCP IPv4 server group to the DHCP relay uplink interface:

```
OcNOS#configure terminal
OcNOS(config)#interface xel
OcNOS(config-if)#ip dhcp relay server-select group1
```

ipv6 dhcp relay server-group

Use this command to create the DHCP IPv6 server group. This group lists the servers to which DHCP relay forwards the DHCP client requests.

Use the no form of this command to unconfigure the DHCP IPv6 server group.

Command Syntax

ipv6 dhcp relay server-group GROUP_NAME
no ipv6 dhcp relay server-group GROUP NAME

Parameters

GROUP NAME Name of the DHCP server group (specify a maximum of 63 alphanumeric characters).

Command Mode

Configure mode and VRF mode. In the configure mode, the DHCP IPv6 server group is created in the default VRF. In the configure-vrf mode, the DHCP IPv6 server group is created in the user-defined VRF.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The example below shows the creation of DHCP IPv6 server groups:

```
OcNOS#configure terminal
OcNOS(config)#ip vrf vrf1
OcNOS(config-vrf)#ipv6 dhcp relay server-group Group1
OcNOS(dhcp relay server-group)#end
OcNOS#configure terminal
OcNOS(config)#ipv6 dhcp relay server-group Group2
```

ipv6 dhcp relay server-select

Use this command to attach the DHCP IPv6 group to the DHCP relay uplink interface.

Use the no form of this command to remove the DHCP IPv6 group attached to the interface.

Note: Attach the groups only to the DHCP relay uplink interfaces.

Command Syntax

```
ipv6 dhcp relay server-select GROUP_NAME
no ipv6 dhcp relay server-select
```

Parameters

GROUP NAME Name of the DHCP server group (specify a maximum of 63 alphanumeric characters).

Command Mode

Interface mode.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The below example shows how to attach the DHCP IPv6 server group to the DHCP relay uplink interface:

```
#configure terminal
(config)#interface xe1
(config-if)#ipv6 dhcp relay server-select group1
```

server A.B.C.D

Use this command to add the DHCP IPv4 servers to the DHCP server group.

Use the no form of this command to remove the DHCP IPv4 servers from the DHCP server Group.

Note: A maximum of eight servers can be added to a DHCP group.

Command Syntax

server A.B.C.D no server A.B.C.D

Parameters

A.B.C.D DHCP IPv4 Relay group server address to be added in the DHCP server group.

Command Mode

DHCP Relay Group Mode.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The below example shows the addition of DHCP IPv4 servers to a DHCP server group:

```
OcNOS#configure terminal
OcNOS(config)#ip vrf vrf1
OcNOS(config-vrf)#ip dhcp relay server-group group
OcNOS(dhcp-relay-group)#server 10.12.23.205
OcNOS(dhcp-relay-group)#end
OcNOS#configure terminal
```

```
OcNOS(config)#ip dhcp relay server-group group1
OcNOS(dhcp-relay-group)#server 10.12.33.204
```

server X:X::X:X

Use this command to add the DHCP IPv6 servers to the DHCP server group.

Use the no form of this command to remove the DHCP IPv6 servers from the DHCP server group.

Note: A maximum of eight servers can be added to a DHCP group.

Command Syntax

```
server X:X::X:X
no server X:X::X:X
```

Parameters

X:X::X:X DHCP IPv6 Relay Group server address to be added in the DHCP server group.

Command Mode

DHCPv6 Relay Group Mode.

Applicability

This command was introduced in OcNOS version 6.4.1.

Examples

The below example shows the addition of DHCP IPv6 servers to a DHCP server group:

```
OcNOS#configure terminal
OcNOS(config)#ip vrf vrf1
OcNOS(config-vrf)#ipv6 dhcp relay server-group group
OcNOS(dhcp6-relay-group)#server 2003::1
OcNOS(dhcp6-relay-group)#end
OcNOS#configure terminal
OcNOS(config)#ipv6 dhcp relay server-group group1
OcNOS(dhcp-relay-group)#server 2001::1
OcNOS(dhcp6-relay-group)end
```

Abbreviations

The following are some key abbreviations and their meanings relevant to this document:

Acronym	Description
DHCP	Dynamic Host Configuration Protocol
VRF	Virtual Routing and Forwarding

Glossary

The following provides definitions for key terms used throughout this document:

DHCP Client	A DHCP client is a hardware device or software that uses DHCP to get the network configuration information from a DHCP Server.
	VRF: VRF creates a logically isolated routing table within a single physical network device. Each VRF instance works as an independent routing instance that enables separate network traffic, maintains different routing tables, and provides network isolation.
DHCP Server	A DHCP server is a hardware device or software that leases a dynamic IP address to the DHCP client.
DHCP relay agent	A DHCP relay forwards the request from a DHCP client to the DHCP server group and takes the response from the DHCP server group to the DHCP client.
VRF	VRF creates a logically isolated routing table within a single physical network device. Each VRF instance works as an independent routing instance that enables separate network traffic, maintains different routing tables, and provides network isolation.